Let cos theta+ sin theta=root 2 cos theta.show that cos theta-sin theta=root2 sin theta
Answers
Answered by
0
rowseNotessearch
HOMEWORK HELP > MATH
If sinϴ+cosϴ = √2 cosϴ prove that cosϴ-sinϴ = √2 sinϴ, (ϴ is an acute angle)
print Print
document PDF
Given `sin theta + cos theta = sqrt(2)cos theta` prove `cos theta - sin theta = sqrt(2)sin theta`
`sin theta + cos theta = sqrt(2)cos theta` square both sides
`sin^2theta + cos^2 theta + 2sintheta costheta=2cos^2theta`
`sin^2theta - cos^2theta + 2sinthetacostheta=0`
`-sin^2theta + cos^2theta -2sinthetacostheta=0` Add `2sin^2theta` to both sides
`sin^2theta+cos^2theta-2sinthetacostheta=2sin^2theta`
`(costheta-sintheta)^2=2sin^2theta`
`costheta-sintheta=sqrt(2)sintheta` as required.
HOMEWORK HELP > MATH
If sinϴ+cosϴ = √2 cosϴ prove that cosϴ-sinϴ = √2 sinϴ, (ϴ is an acute angle)
print Print
document PDF
Given `sin theta + cos theta = sqrt(2)cos theta` prove `cos theta - sin theta = sqrt(2)sin theta`
`sin theta + cos theta = sqrt(2)cos theta` square both sides
`sin^2theta + cos^2 theta + 2sintheta costheta=2cos^2theta`
`sin^2theta - cos^2theta + 2sinthetacostheta=0`
`-sin^2theta + cos^2theta -2sinthetacostheta=0` Add `2sin^2theta` to both sides
`sin^2theta+cos^2theta-2sinthetacostheta=2sin^2theta`
`(costheta-sintheta)^2=2sin^2theta`
`costheta-sintheta=sqrt(2)sintheta` as required.
Similar questions