Math, asked by aryakashyap7092, 1 year ago

Let d(3, -2), e(-3, 1) and f(4, - 3) be the midpoints of the sides bc, ca and ab respectively of ∆abc. Then, find the coordinates of the vertices a, b and



c.

Answers

Answered by nain31
88
 \bold{GIVEN,}

ΔABC has sides

▶BC with midpoint d(3 , -2)

▶CA with midpoint e(-3 , 1)

▶AD with midpoint f(4 , -3)

Let the coordinates of vertices be:-

▶A \bold{(x_1 , y_1)}

▶B \bold{(x_2 , y_2)}

▶C \bold{(x_3 , y_3)}

By midpoint theorem we know :-

 \bold{For \: midpoints \: of \: BC}

 x = \boxed{ \bold{\frac{x_2 + x_3}{2}}}

 3 = \frac{x_2 + x_3}{2}

3 × 2 =  x_2 + x_3

6=  x_2 + x_3 -----(1)

 y = \boxed {\bold{\frac{y_2 + y_3}{2}}}

 -2 = \frac{y_2 + y_3}{2}

2 × -2 =  y_2 + y_3

-4 =  y_2 + y_3 ----(4)

 \bold{For \: midpoints \: of \: CA}

 x = \boxed{ \bold{\frac{x_1 + x_3}{2}}}

 -3 = \frac{x_1 + x_3}{2}

-3 × 2 =  x_1 + x_3

-6=  x_1 + x_3 -----(2)

 y =\boxed{ \bold{ \frac{y_1 + y_3}{2}}}

 1 = \frac{y_1 + y_3}{2}

2 × 1=  y_1 + y_3

2=  y_1 + y_3 ----(5)

 \bold{For \: midpoints \: of \: AB}

 x = \boxed{ \bold{\frac{x_1 + x_2}{2}}}

 4 = \frac{x_1 + x_2}{2}

4 × 2=  x_1 + x_2

8=  x_1 + x_2 -----(3)

 y =\boxed{ \bold{ \frac{y_1 + y_2}{2}}}

 -3 = \frac{y_1 + y_2}{2}

2 × -3=  y_1 + y_2

-6=  y_1 + y_2 ----(6)

 \bold{FOR \: x \:CoRDINATES}

On adding eq (1) ,(2) and (3)

 x_2 + x_3 + x_1 + x_3 + x_1 + x_2 = 6 + (-6) + 8

 2x_2 + 2x_3 + 2x_1 = 8

 2(x_2 + x_3 + x_1 )= 8

 x_2 + x_3 + x_1 = \frac{8}{2}

 \bold{x_2 + x_3 + x_1 = 4}

◼On placing the value of eq (1)6=  x_2 + x_3

 6+ x_1 = 4

 x_1 = 4- 6

 x_1 = -2

◼On placing the value of eq (2) -6=  x_1 + x_3

 -6+ x_2 = 4

 x_2 = 4 + 6

 x_2= 10

◼On placing the value of eq (3) 8=  x_1 + x_2

 8+ x_3 = 4

 x_3 = 4 - 8

 x_3 = -4

 \bold{FOR \: y \:CoRDINATES}

On adding eq (4) ,(5) and (6)

 y_2 + y_3 + y_1 + y_3 + y_1 + y_2 = -4 + 2 + (-6)

 2y_2 + 2y_3 + 2y_1 =- 8

 2(x_2 + x_3 + x_1 )= -8

 x_2 + x_3 + x_1 = \frac{-8}{2}

 \bold{x_2 + x_3 + x_1 = - 4}

◼On placing the value of eq (4)-4=  y_2 + y_3

 -4 + y_1 = 4

 y_1 = 4 + 4

 y_1 = 8

◼On placing the value of eq (5) 2=  y_1 + y_3

 2 + y_2 = 4

 y_2 = 4 - 2

 y_2= 2

◼On placing the value of eq (6) -6=  y_1 + y_2

 -6 + x_3 = 4

 y_3 = 4 - 6

 y_3 = - 2

So,

 \bold{CORDINATES \: OF \: A = (-2 ,8)}

 \bold{CORDINATES \: OF \: B = (10 ,2)}

 \bold{CORDINATES \: OF \: C = (-4 ,-2)}
Answered by sarbojit2006
15

Answer:

Step-by-step explanation:

Attachments:
Similar questions