Math, asked by kamdimahesh77, 10 months ago



Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3
The derivative of √[[f(x)]^2+ [g (x)]^2]

W. r. to. x. is

(A) -29/15



(B) 7/3

(C) 31/15


(D) 29/15

Answers

Answered by amitnrw
2

Given :  f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

To Find : The derivative of √[[f(x)]^2+ [g (x)]^2]  wrt x at x = 1

Solution:

derivative of √[[f(x)]²+ [g (x)]²]

= {  1/2√[[f(x)]²+ [g (x)]²]  }  { 2 f(x) f'(x)  + 2g(x) g'(x) }

at  x = 1

= {  1/2√[[f(1)]²+ [g (1)]²]  }  { 2 f(1) f'(1)  + 2g(1) g'(1) }

=  {  1/2√[[3]²+ [-4]²]  }  { 2 (3) (-1/3)  + 2(-4) (-8/3) }

=  {  1/2(5) }  { -2 + 64/3) }

=  { 1/10 } { 58/3}

= 58/30

= 29/15

29/15 is correct answer

Learn More:

Find the derivative by first principle:  m sqrt{sin x} - Brainly.in

https://brainly.in/question/7855227

Find the derivative of the following functions from first principle. (i) x ...

https://brainly.in/question/17176417

Answered by pulakmath007
36

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \sf{ \: }f(1)=3 \: ,  \:  f'(1)= -  \frac{1}{3} \: , \: g(1)= -4 \: , \: g'(1)=- \frac{8}{3}

TO DETERMINE

The derivative of

 \sf{ \sqrt{ {[ \: f(x) \: ] }^{2}  +  {{[ \: g(x) \: ] }}^{2}  \: }  \:  \: }

CALCULATION

It is given that

 \displaystyle \sf{ \: }f(1)=3 \: ,  \:  f'(1)= -  \frac{1}{3} \: , \: g(1)= -4 \: , \: g'(1)=- \frac{8}{3}

 \sf{ Let \:  \:  \:  y = \sqrt{ {[ \: f(x) \: ] }^{2}  +  {{[ \: g(x) \: ] }}^{2}  \: }  \:  \: } \:  \:  \: ......(1)

For x = 1

 \sf{y = \sqrt{ {[ \: f(1) \: ] }^{2}  +  {{[ \: g(1) \: ] }}^{2}  \: } \:  \: }

 \sf{  =  \sqrt{9 + 16}  \:  \: }

 =  \sf{ \sqrt{25} \: }

 \sf{ = 5 }

From Equation (1)

 \sf{{y}^{2} = {[ \: f(x) \: ] }^{2}  +  {{[ \: g(x) \: ] }}^{2}  \:   \:  \: }

Differentiating both sides with respect to x we get

\displaystyle \sf{  2y \frac{dy}{dx} = 2f(x)f' (x) + 2g(x)g' (x) \: }

 \implies \: \displaystyle \sf{  y \frac{dy}{dx} = f(x)f' (x) + g(x)g' (x) \: }

Putting x = 1 in both sides

\displaystyle \sf{  5 \frac{dy}{dx} = f(1)f' (1) + g(1)g' (1) \: }

 \implies \: \displaystyle \sf{  5 \frac{dy}{dx} =3 \times ( -  \frac{1}{3}  ) + ( - 4) \times ( -  \frac{8}{3} )\: }

 \implies \: \displaystyle \sf{  5 \frac{dy}{dx} = - 1 +  \frac{32}{3} \: }

 \implies \: \displaystyle \sf{  5 \frac{dy}{dx} =  \frac{29}{3} \: }

 \implies \: \displaystyle \sf{  \frac{dy}{dx} =  \frac{29}{15} \: }

RESULT

 \displaystyle \sf{  The  \: required  \: derivative = \frac{29}{15} \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Use Rolles Theorem to find a real number in the interval (0,3) Where the derivative of the function f(x)=x(x-3)^2 Vanish

https://brainly.in/question/22736169

Similar questions