Math, asked by rangini2020, 8 months ago

let f and g be two odd functions then the function of fog is
a. an even function
b. an odd function
c. neither even nor odd
d. a periodic function​

Answers

Answered by baaniarora15gmailcom
0

Answer:-

f is even (given)

∴f(−x)=f(x)

g is odd (given)

∴g(−x)=−g(x)

So,

According to question,

fog=f[g(x)]=f(y)             Let [g(x)]=y

and also,

fog=f[g(−x)]        ∵g(x) is odd

        =f[−g(x)]

        =f(−y)

        =f(y)

⇒fog(x)=fog(−x)

∴fog is an even function

Step-by-step explanation:

Hope it helps you...Please mark me as Brainliest

Answered by PravinRatta
0

Given:

Functions f and g are two odd functions

To Find:

Nature of the function fog

Solution:

We know that a function f is odd if f(-x)=-f(x).

The function fog is the composition of the functions f and g

i.e.  fog(x)=f(g(x))

We will check what is the value of fog(-x)

fog(-x)=f(g(-x))

We know that g is odd

∴  g(-x)=-g(x)

fog(-x)=f(-g(x))

Similarly f is also an odd function

f(-x)=-f(x)

fog(-x)=-f(g(x))

Hence, when f and g are odd functions, fog is also odd.

#SPJ3

Similar questions