let,f,g.h are functions from R to Rdefined as f(x)=x+2,g(x)=1/(x^2+1),h(x)=3 .compute f^(-1).g(x) and h.f.(g.f^(-1)).(h.f(x))
Answers
Answered by
0
Answer:
(i)
To prove:
(f+g)oh=foh+goh
Consider:
((f+g)oh)(x)
=(f+g)(h(x))
=f(h(x))+g(h(x))
=(foh)(x)+(goh)(x)
=(foh)+(goh)(x)
∴((f+g)oh)(x)=(foh)+(goh)(x) for all x∈R
Hence, (f+g)oh=foh+goh
(ii)
To prove: (f.g)oh=(foh).(goh)
Consider:
((f.g)oh)(x)
=(f.g)(h(x))
=f(h(x)).g(h(x))
=(foh)(x).(goh)(x)
=(foh).(goh)(x)
∴((f.g)oh)(x)=(foh).(goh)(x) for allx∈R
Hence, (f.g)oh=(foh).(goh)
Video Explanation
Similar questions