Let f : R → : f(x) = x2
and g : R → : g(x) = 2x+1. Find
i) (f+g)(x) ii) (f-g)(x).
Answers
EXPLANATION.
→ f : R → : f (x) = x² and g : R → : g (x) = 2x + 1
To find (1) = ( f + g) (x) (2) = (f - g) (x).
→ (1) = ( f + g) (x)
→ f(x) + g(x)
→ x² + ( 2x + 1 )
→ x² + 2x + 1
→ (2) = ( f - g) (x)
→ f(x) - g(x)
→ x² - ( 2x + 1 )
→ x² - 2x - 1
More information.
property of greatest integer function.
→ (1) = [x] ≤ x ≤ [x] + 1
→ (2) = x - 1 < [x] ≤ x
→ (3) = 0 ≤ x - [x] < 1
→ (4) = [ x + m ] = [ x] + m → if m is an integer.
→ (5) = [ x ] + [ y ] ≤ [ x + y ] ≤ [ x ] + [ y ] + 1
[ -x] = - [ x] → if x € I
[ -x ] = - [ x ] - 1 if x ¢ I
→ (6) = [ x ] + [ -x ] = 0 if x is an integer.
[ x ] + [ - x ] = -1 in other conditions.
→ (7) = if [ x ] > n → x ≥ n + 1 → n € Integer.
→ (8) = if [ x ] < n → x < n → n € integer.
→ (9) = [ x + y ] = [ x ] + [ y + x ( -x) ] for all x
y € R
→ (10) = if [ ø (x) ] ≥ I then ø (x) ≥ I
→ (11) = if [ ø (x) ] ≤ I then ø ( x) ≤ I + 1
→ (12) = x - [ x ] is the fractional part of x
→ (13) = - [ -x] is the least integer ≥ x