Math, asked by Anonymous, 3 months ago

Let F : R → R be a continuous odd function , which vanishes exactly at one point and f(1)=1/2
Suppose that F(x)= \sf\displaystyle \int^x _{-1}f(t)dt for all x∈[-1,2] and
\sf G(x)=\displaystyle \int^2 _{-1} t|f\{f(t)\}|dt for all x∈[-1,2] . if \sf\displaystyle \lim_{x\to 1}\dfrac{F(x)}{G(x)} =\dfrac{1}{14} . then the value of f(1/2) is

Answers

Answered by mathdude500
17

\large\underline{\bold{Given  \: correct\:Question - }}

Let F : R → R be a continuous odd function , which vanishes exactly at one point and f(1)=1/2.

Suppose that

 \bf \: F(x)= \sf\displaystyle \int^x _{-1}f(t)dt \:  \:  \: for \:  all  \: x \:  \in \: [-1,2]

and

\bf G(x)=\displaystyle \int^x _{-1} t|f\{f(t)\}|dt \: for \:  all  \: x \:  \in \: [-1,2] .

 \sf \: if  \: \bf\displaystyle \lim_{x\to 1}\dfrac{F(x)}{G(x)} =\dfrac{1}{14} \: \bf then \: value \: of \: f\bigg(\dfrac{1}{2}  \bigg)

\large\underline{\bold{Solution-}}

Given that

 \bf \: F(x)= \sf\displaystyle \int^x _{-1} \sf \: f(t)dt \:  \:  \: for \:  all  \: x \:  \in \: [-1,2]

and

\bf G(x)=\displaystyle \int^x _{-1} \sf \:  t|f\{f(t)\}|dt \: for \:  all  \: x \:  \in \: [-1,2] .

Now,

According to statement,

\bf\displaystyle \lim_{x\to 1} \bf \: \dfrac{F(x)}{G(x)} =\dfrac{1}{14}

On substituting the values of F(x) and G(x), we have

\bf\displaystyle \lim_{x\to 1}\dfrac{\sf\displaystyle \int^x _{-1} \sf \: f(t)dt \:}{\displaystyle \int^x _{-1} \sf \:  t|f\{f(t)\}|dt \:} =\dfrac{1}{14}

Using L - Hospital Rule and Leibniz Rule for differentiation under the integral sign, we get

\bf\displaystyle \lim_{x\to 1}\dfrac{0 + \dfrac{d}{dx}(x) \: \times  f(x) - \dfrac{d}{dx}( - 1) \times f( - 1) }{0 + \dfrac{d}{dx}(x) \times x |f \{f(x) \}| - \dfrac{d}{dx}( - 1) \times ( - 1) |f \{f( - 1) \}| }  = \dfrac{1}{14}

\bf\displaystyle \lim_{x\to 1} \:  \bf\dfrac{f(x)}{x |f \{f(x) \}|}  = \dfrac{1}{14}

 \sf \: \dfrac{f(1)}{1 \times  |f \{f(1) \}|}  = \dfrac{1}{14}

 \sf \: \dfrac{\dfrac{1}{2} }{ f\bigg( \dfrac{1}{2} \bigg)  }  = \dfrac{1}{14}  \:  \:  \:  \:  \:  \:  \:   \:  \:  \bigg\{ \because \:  \bf \: f(1) = \dfrac{1}{2}   \bigg\}

 \therefore \bf \: f\bigg( \dfrac{1}{2} \bigg)  = 14 \times \dfrac{1}{2}  = 7

Note :-

1. L' Hospital's rule can only be applied in the case where direct substitution yields an indeterminate form, such as 0/0 or ±∞/±∞. So if f and g are defined, L' Hospital would be applicable only if the value of both f and g is 0 or ∞.

2. Leibniz Rule for differentiation under the integral sign :-

 \sf \: \dfrac{d}{dx}\sf\displaystyle \int^{a(x)} _{{b(x)}} \sf \: f(t)dt \: = \dfrac{d}{dx}a(x) \times f\bigg( a(x)\bigg)  - \dfrac{d}{dx}b(x) \times f\bigg( b(x)\bigg)

Answered by shadowsabers03
11

Correct Question:-

Let \displaystyle\sf {f:\mathbb{R}\to\mathbb{R}} be a continuous odd function, which vanishes exactly at one point and \displaystyle\sf {f(1)=\dfrac{1}{2}.} Suppose that \displaystyle\sf {F(x)=\int\limits_{-1}^xf(t)\ dt} for all \displaystyle\sf {x\in[-1,\ 2]} and \displaystyle\sf {G(x)=\int\limits_{-1}^xt|f(f(t))|\ dt} for all \displaystyle\sf {x\in[-1,\ 2].} If \displaystyle\sf {\lim_{x\to1}\dfrac{F(x)}{G(x)}=\dfrac{1}{14},} then find the value of \displaystyle\sf {f\left(\dfrac{1}{2}\right).}

Solution:-

Since \displaystyle\sf {f} is an odd function, we have,

  • \displaystyle\sf{f(-x)=-f(x)}

So,

  • \displaystyle\sf {f(-1)=-f(1)=-\dfrac{1}{2}}

and,

  • \displaystyle\sf {f(-0)=f(0)=-f(0)\ \implies\ f(0)=0}

also for some \displaystyle\sf {a\in\mathbb{R},}

  • \displaystyle\sf {\int\limits_{-a}^af(t)\ dt=0\quad\quad\dots(1)}

Given,

\displaystyle\longrightarrow\sf {F(x)=\int\limits_{-1}^xf(t)\ dt}

For \displaystyle\sf {x=1,}

\displaystyle\longrightarrow\sf {F(1)=\int\limits_{-1}^1f(t)\ dt}

Using (1),

\displaystyle\longrightarrow\sf {F(1)=0}

But given,

\displaystyle\sf {\longrightarrow\lim_{x\to1}\dfrac{F(x)}{G(x)}=\dfrac{1}{14}}

Here \displaystyle\sf {F(x)\to0} when \displaystyle\sf {x\to1} but still the limit \displaystyle\sf {\lim_{x\to1}\dfrac{F(x)}{G(x)}} exists as non-zero.

That means \displaystyle\sf {G(x)\to0} and so L'hospital's Rule is applied in this limit, i.e.,

\displaystyle\sf{\longrightarrow\lim_{x\to1}\dfrac{F'(x)}{G'(x)}=\dfrac{1}{14}\quad\quad\dots(2)}

Consider,

\displaystyle\longrightarrow\sf {F(x)=\int\limits_{-1}^xf(t)\ dt}

By Leibniz Rule,

\displaystyle\longrightarrow\sf {F'(x)=f(x)-f(-1)}

\displaystyle\longrightarrow\sf {F'(x)=f(x)+\dfrac{1}{2}}

At \displaystyle\sf {x=1,}

\displaystyle\longrightarrow\sf {F'(1)=f(1)+\dfrac{1}{2}}

\displaystyle\longrightarrow\sf {F'(1)=\dfrac{1}{2}+\dfrac{1}{2}}

\displaystyle\longrightarrow\sf {F'(1)=1}

So (2) becomes,

\displaystyle\sf{\longrightarrow\dfrac{1}{G'(1)}=\dfrac{1}{14}}

\displaystyle\sf{\longrightarrow G'(1)=14}

Consider,

\displaystyle\sf {\longrightarrow G(x)=\int\limits_{-1}^xt|f(f(t))|\ dt}

By Leibniz Rule,

\displaystyle\sf {\longrightarrow G'(x)=x|f(f(x))|+|f(f(-1))|}

At \displaystyle\sf {x=1,}

\displaystyle\sf {\longrightarrow G'(1)=|f(f(1))|+|f(f(-1))|}

\displaystyle\sf {\longrightarrow 14=\left|f\left(\dfrac{1}{2}\right)\right|+\left|f\left(-\dfrac{1}{2}\right)\right|}

Since \displaystyle\sf {f} is odd,

\displaystyle\sf {\longrightarrow 14=\left|f\left(\dfrac{1}{2}\right)\right|+\left|-f\left(\dfrac{1}{2}\right)\right|}

Given that \displaystyle\sf {f} vanishes exactly at one point, and we see \displaystyle\sf {f(0)=0,} i.e., it vanishes at \displaystyle\sf {x=0} and there is no other \displaystyle\sf {x} such that \displaystyle\sf {f(x)=0.}

Since \displaystyle\sf {f(1)>0,} the function \displaystyle\sf {f} should be strictly increasing and is positive in the interval \displaystyle\sf {[0,\ 1].} Else there may be another \displaystyle\sf {x\in(0,\ 1)} such that \displaystyle\sf {f(x)=0.}

Thus \displaystyle\sf {f\left(\dfrac {1}{2}\right)>0.} So,

\displaystyle\sf {\longrightarrow 14=f\left(\dfrac{1}{2}\right)+f\left(\dfrac{1}{2}\right)}

\displaystyle\sf {\longrightarrow 14=2f\left(\dfrac{1}{2}\right)}

\displaystyle\sf {\longrightarrow\underline{\underline{f\left(\dfrac{1}{2}\right)=7}}}

Hence 7 is the answer.

Similar questions