Math, asked by roshini2536, 9 months ago

Let f: R → R be defined by f(x) = 2x + |x|, then f (2x) + f(-x) -f(x) is equal to *

Answers

Answered by pulakmath007
23

</p><p></p><p>\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

By the definition of modulus

[tex] |x| =

\begin{cases}

\: \: \: x& \text{if } x \geqslant 0 \\ \\

- x & \text{if } x < 0

\end{cases}[/tex]

So

 | - x|  =  |x|

GIVEN

Let f:  \mathbb{R} →  \mathbb{R} \:  \:  be \:  defined \:  by \:  f(x) = 2x + |x|

TO EVALUATE

f (2x) + f(-x) -f(x)

EVALUATION

f (2x)  = 2 \times 2x +  |2x|  = 4x + 2 |x|

f(-x)  = 2 \times ( - x) +  | - x|  =  - 2x +  |x|

f(x)  = 2x +  |x|

Hence

f (2x) + f(-x) -f(x)  = 4x + 2 |x|  - 2x +  |x|  - 2x -  |x|  = 2 |x|

Similar questions