Math, asked by kopal1680, 11 months ago

Let f(x) = ₀ˣ∫ g(t)dt, were g is a non zero even function. If f(x+5) = g(x) , then ₀ˣ∫ f(t)dt
equals (A) ⁵∫ₓ₊₅ g(t)dt
(B) 2∫₅ˣ⁻⁵ g(t)dt
(C) ˣ⁺⁵∫₅ g(t)dt
(D) 5∫⁵ₓ₊₅ g(t)dt

Answers

Answered by imaviralsharma
1

Answer:

pls mark me brainliest

Step-by-step explanation:

Answered by jitendra420156
4

Therefore

\int^x_0f(x) dx=\int^5_{5+x} g(t)dt

Step-by-step explanation:

Given,

f(x)= \int^x_0 g(t) dt

Putting x=-x

f(-x)= \int^{-x}_0 g(t) dt

Putting t = -u, dt = -du

=\int^u_0g(-u) (-du)  

=-\int^u_0g(-u) du

=-\int^u_0g(u) du     [ since g is a non zero even function]

= - f(x)

Therefore f is a odd function.

And

f(x+5)= g(x)

Putting x= -x

f(-x+5)= g(-x)

                = g(x)      [ since g is a non zero even function]

     f(-x+5)=f(x+5)

Let

I=\int^x_0f(x) dx

Putting x= 5+u , dx= du,lower limit x=0, u+5=0⇒u= -5 and upper limit x=x , u= x-5

   =\int^{x-5}_{-5}f(5+u) du

  =\int ^{x-5}_{-5}g(u) du

  =\int ^{x-5}_{-5}f'(u) du

  =f(x-5)-f(-5)

  =-f(-x+5)+f(5)    [ since f is odd function f(-x)=-f(x)]

  =f(5)-f(-x+5)

 =f(5)-f(x+5)   [ ∵ f(-x+5)=f(5+x)  from (i)]

  =\int^5_{5+x} f'(t)dt

  =\int^5_{5+x} g(t)dt

 Therefore

\int^x_0f(x) dx=\int^5_{5+x} g(t)dt

 

 

 

Similar questions