Math, asked by mohamedaymen2072002, 4 months ago

Let f"(x)=2x+1/2 x^(-1/2),f'(1)=2 and f(1)=3. Find f(x).

Answers

Answered by Asterinn
10

It is given that :-

 \tt \large \:f"(x) = 2x +  \dfrac{1}{2}  {x}^{ \frac{ - 1}{2} }  \\  \\  \tt \large f'(1) = 2 \\  \\  \tt \large \: f(1) = 3

Now , first we will find the f'(x).

To find f'(x) we have to integrate f''(x).

 \tt \longrightarrow \displaystyle \int  \tt \: f"(x)dx = \displaystyle \int  \tt(2x +  \dfrac{1}{2}  {x}^{ \frac{ - 1}{2} })dx \\  \\ \tt \longrightarrow   \tt \: f '(x)=  \tt {  \: {x}^{2} } +   {x}^{ \frac{1}{2} } + c

Here, c is constant.

To find the value of C , put x = 1

f'(1) = 2 [ given ]

 \tt \longrightarrow   \tt \: f '(1)=  \tt {  \: {1}^{2} } +   {1}^{ \frac{1}{2} } + c \\  \\ \tt \longrightarrow   \tt \: 2 =  \tt {  \: {1}^{2} } +   {1}^{ \frac{1}{2} } + c\\  \\ \tt \longrightarrow   \tt \: 2 =  \tt {  \: {1}} +   {1}+ c\\  \\ \tt \longrightarrow   \tt \: 0 =   c

 \tt \therefore f '(x)=  \tt {  \: {x}^{2} } +   {x}^{ \frac{1}{2} } + 0 \\   \\  \tt \rightarrow f '(x)=  \tt {  \: {x}^{2} } +   {x}^{ \frac{1}{2} }

Now we will find f(x) by integrating f'(x) :-

\tt \longrightarrow \displaystyle \tt \int f '(x) \: dx=  \displaystyle \tt \int ({  \: {x}^{2} } +   {x}^{ \frac{1}{2} })dx \\    \\ \tt \longrightarrow  \tt f (x) =  \displaystyle \tt {   \dfrac{ {x}^{3} }{3}  } +   \dfrac{2 \: {x}^{ \frac{2}{3}}}{3}  + k

Here, K is constant.

To find the value of K , put x = 1

f (1) = 3 [ given ]

\longrightarrow  \tt f (1) =  \displaystyle \tt {   \dfrac{ {1}^{3} }{3}  } +   \dfrac{2 \: {(1)}^{ \frac{2}{3}}}{3}  + k \\  \\ \longrightarrow  \tt f (1) =  \displaystyle \tt {   \dfrac{ {1} }{3}  } +   \dfrac{2 }{3}  + k\\  \\ \longrightarrow  \tt 3 =  \displaystyle \tt   \dfrac{1 + 2 }{3}  + k\\  \\ \longrightarrow  \tt 3 =  \displaystyle \tt   1 + k\\  \\ \longrightarrow  \tt 2 =  \displaystyle \tt    k

 \therefore \: \tt f (x) =  \displaystyle \tt {   \dfrac{ {x}^{3} }{3}  } +   \dfrac{2 \: {x}^{ \frac{2}{3}}}{3}  + 2

Similar questions