Let f(x) = 4x + 2 and g(x) = 2x2-4. Find the formula for the composition function g f.
Answers
Step-by-step explanation:
g(f(x)) => g(4x+2) let's take 4x+2 as y. So
Substitute y=> 4x+2 in g(y) then we get
Hope it helps you.
Answer:
g(f(x)) =32x+32x+4
Step-by-step explanation:
g(f(x)) => g(4x+2) let's take 4x+2 as y. So
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we get
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2)
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x 2
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x 2 +4+2.2.4x)−4
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x 2 +4+2.2.4x)−4g(f(x)) = 32 {x}^{2} + 8 + 32x - 4 = >g(f(x))=32x
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x 2 +4+2.2.4x)−4g(f(x)) = 32 {x}^{2} + 8 + 32x - 4 = >g(f(x))=32x 2
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x 2 +4+2.2.4x)−4g(f(x)) = 32 {x}^{2} + 8 + 32x - 4 = >g(f(x))=32x 2 +8+32x−4=>
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x 2 +4+2.2.4x)−4g(f(x)) = 32 {x}^{2} + 8 + 32x - 4 = >g(f(x))=32x 2 +8+32x−4=>g(f(x)) = 32 {x}^{2} +32x + 4g(f(x))=32x
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x 2 +4+2.2.4x)−4g(f(x)) = 32 {x}^{2} + 8 + 32x - 4 = >g(f(x))=32x 2 +8+32x−4=>g(f(x)) = 32 {x}^{2} +32x + 4g(f(x))=32x 2
g(f(x)) => g(4x+2) let's take 4x+2 as y. Sog(y) = 2 {y}^{2} - 4g(y)=2y 2 −4Substitute y=> 4x+2 in g(y) then we getg(4x + 2) = 2 {(4x + 2)}^{2} - 4 = >g(4x+2)=2(4x+2) 2 −4=>g(f(x)) = 2(16 {x}^{2} + 4 + 2.2.4x) - 4g(f(x))=2(16x 2 +4+2.2.4x)−4g(f(x)) = 32 {x}^{2} + 8 + 32x - 4 = >g(f(x))=32x 2 +8+32x−4=>g(f(x)) = 32 {x}^{2} +32x + 4g(f(x))=32x 2 +32x+4
Hope you understandmark me as brainlist and follow me.