Math, asked by anveshagautam20238dp, 5 hours ago

Let f(x) = x6 – x5 – x3 – x2 - x and g(x) = x4 – x3 - 2-1..
If a, b, c, d are the four zeroes of the polynomialg ), then
find the value of f(a) + f(b) + f(c) + f(d).
Alor:​

Answers

Answered by amitnrw
2

Given : f(x) = x⁶ - x⁵ – x³ – x² – x  

g(x) = x⁴ - x³ - x² - 1

a, b, c, d are the four zeroes of the polynomial g(x)

To Find :  the value of f(a) + f(b) + f(c) + f(d).​

Solution

g(x) = x⁴ - x³ - x² - 1

 x⁴ - x³ - x² - 1  = 0

=>   x⁴ - x³ - 1  =  x²

f(x) = x⁶ - x⁵ – x³ – x² – x

= x (x⁵ – x⁴ – x² – x  - 1)

= x ( x ( x⁴ – x³ – x  - 1 ) - 1 )

= x ( x  (x²   - x) - 1)

= x( x³  - x²  - 1)

= x⁴ - x³  - x

(  x⁴ - x³ - x² - 1  = 0 => x⁴ - x³ = x²+  1  

=  x²+  1  - x

= x² - x + 1

f(x)= x² - x + 1

f(x)= x² - x + 1   can be achieved using long division of f(x)/g(x)  and getting remainder  as g(x) = 0   so only remainder will give value

f(a) + f(b) + f(c) + f(d).​

 =  (a² + b² + c² + d²) - (a + b + c + d ) + (1 +1 + 1 +1 )

=   (a² + b² + c² + d²) - (a + b + c + d ) + (4 )

a , b , c and  d are zeroes of g(x) = x⁴ - x³ - x² - 1

a + b + c + d =  - (-1)/(1)  = 1

a² + b² + c² + d² = (a  + b +  c + d) ²  - 2∑ab

=> a² + b² + c² + d² = (1) ²  - 2 ( -1)/1  

=> a² + b² + c² + d² = 1  + 2 = 3

Hence

f(a) + f(b) + f(c) + f(d).​  =    3  -  1  + 4   = 6

Learn More:

33.If two zeroes of polynomial P(x) = 2x4 + 10x3 + 5x2 – 35x – 42 are

brainly.in/question/14933868

ABCD is a cyclic quadrilateral. AB is produced to E. It is given that ...

brainly.in/question/15399713

in the figure ABCD is a cyclic quadrilateral the tangents at the points ...

brainly.in/question/13340209

Similar questions