Math, asked by saiprateekc, 9 months ago

Let L be the line belonging to the family of the straight lines (a + 2b) x + (a – 3b) y +a - 86 = 0,
a, b belongs to R, which is farthest from point P (2,2)
Q: The equation of line L is​

Answers

Answered by gyanupandey1614
3

Given (a+2b)x+(a−3b)y+a−8b=0

a(x+y+1)+b(2x−3y−8)=0

L  

1

​  

:x+y+1=0

L  

2

​  

:2x−3y−85=0

L  

2

​  

−2L  

1

​  

⇒(2x−3y−8=0)−(2x+2y+2=0)=−5y−10=0

y=−2,x=1

Any line belong to family of lines is λ(x+y+1)+(2x−3y−8)=0  

x(2+λ)+y(a−3)+λ−8=0

distance from (2,2) should be maximum.

d  

2

=(x−2)  

2

+(y−2)  

2

 

=(x−2)  

2

+(  

λ−3

(2+λ)x+(λ−8)

​  

)  

2

 

Farthest line is the line which give maximum perpendicular distance.

d=  

(λ+2)  

2

+(λ−3)  

2

 

​  

 

2(2+λ)+2(λ−3)+λ−8

​  

 

=  

2λ  

2

+13−2λ

​  

 

5λ−10

​  

 

d  

2

=(  

2λ  

2

+13−2λ

25(λ−2)  

2

 

​  

)

d  

2

=(  

2λ  

2

+13−2λ

25(λ−2)  

2

 

​  

)

d(d  

2

)

​  

=2(λ−2)(2λ  

2

−2λ+13)+(4λ−2)(λ−2)  

2

=0

=2(2λ  

2

−2λ+13)+(λ−2)(2λ−1)=0

(λ−2)(2λ  

2

−2λ+13+2λ  

2

−λ−4λ+2)=0

(λ−2)(2λ  

2

−7λ+15)=0

⇒λ−2=0

⇒4x−y−7=0

a=  

4

7

​  

,b=  

1

7

​  

 

Δ=  

2

1

​  

ab=  

4

49

​  

×  

2

1

​  

 

=  

8

49

Similar questions