Let 'P' be the perimeter and 'a' be the length of unequal side of an isosceles triangle and it's area is 'A', then prove that 16A² = a²p(p-2a)
Answers
Answered by
4
Answer:
a is unequal side
P=2x+a
A=1/2*(a/2)*x
A=ax/4
16(a2x2)/16
so a2x2
from above equation of P substituting value of x
16A²=a²p(p-2a)
proved
Answered by
4
Step-by-step explanation:
Let the unequal side be c = a
s = (a+b+c)/2 = (2b + a)/2
2b = 2s-a
b = (2s-a)/2 = (p-a)/2
A = √s(s-a)(s-b)(s-c)
= √(s)(s-b)(s-b)(s - a)
= (s-b) √[s(s-a)]
= [s - (p-a)/2] √[s(s-a)]
= [p/2 - (p-a)/2] √[s(s-a)]
= (a/2) √[p/2(p/2-a)]
= (a/2) √[p/2(p/2 - a)]
2A= a √[p/2(p/2 - a)]
4A^2 = a²[ (p^/2)/4 - ap/2)]
16A^2 = a² p (p-2a)
Similar questions
Math,
6 months ago
CBSE BOARD XII,
6 months ago
Hindi,
6 months ago
Physics,
1 year ago
Sociology,
1 year ago
Science,
1 year ago
Social Sciences,
1 year ago