Math, asked by arunajay314, 5 hours ago

let p,q,r be positive integers such that q/p is an integer if p,q,r are in geometric progression and the arithmetic mean of p,q,r is q+5 also
x = p2-p+14/p+1
then[x] is where [.] denotes greater integer function​

Attachments:

Answers

Answered by amansharma264
86

EXPLANATION.

Let, p, q, r be positive integers.

Such that q/p is an integers.

p, q, r are in geometric progression.

The arithmetic mean of p, q, r is q + 5.

As we know that,

⇒ p, q, r - - - - - (G.P).

⇒ p = a.

⇒ q = ar.

⇒ r = ar².

⇒ (p + q + r)/3 = (q + 5).

⇒ (p + q + r) = 3(q + 5).

⇒ (p + q + r) = 3(q) + 15.

⇒ a + ar + ar² = 3(ar) + 15.

⇒ a + ar + ar² - 3ar = 15.

⇒ a - 2ar + ar² = 15.

⇒ a(1 - 2r + r²) = 15.

⇒ (1 - 2r + r²) = 15/a.

⇒ (r² - 2r + 1) = 15/a.

⇒ (r - 1)² = 15/a.

Since, 15/a must be perfect square and a ∈ N.

So, a = 15.

Put the value of a = 15 in the equation, we get.

⇒ (r - 1)² = 15/15.

⇒ (r - 1)² = 1.

⇒ (r - 1) = ± 1.

⇒ r = 0, 2.

⇒ r = 2.

⇒ a = p = 15.

To find :

⇒ x = (p² - p + 14)/p + 1.

⇒ x = [(15)² - (15) + 14]/(15 + 1).

⇒ x = [225 - 15 + 14]/(16).

⇒ x = [239 - 15]/(16).

⇒ x = [224]/(16).

⇒ x = 14.

Option [B] is correct answer.


mddilshad11ab: Perfect explaination ✔️
amansharma264: Thanku
Answered by Itzheartcracer
68

Given :-

Let p,q,r be positive integers such that q/p is an integer if p,q,r are in geometric progression

To Find :-

x = p² - p + 14/p + 1

Solution :-

We know that

Terms of GP = a, ar, ar², ar³

Now

p = a

q = ar

r = ar²

Arthimetic Mean = a + 5

Now

p + q + r/3 = a + 5

p + q + r = 3(a + 5)

p + q + r = 3a + 15

By putting the value

a + ar + ar² = 3ar + 15

a + ar + ar² - 3ar = 15

a + (ar - 3ar) + ar² = 15

a + (-2ar) + ar² = 15

a - 2ar + ar² = 15

Taking a as common

a[1 - 2(1)r + 1(r²)] = 15

a[1 - 2r + r²] = 15

1 - 2r + r² = 15/a

(r - 1)² = 15/a

Value of p = 15

(r - 1)² = 15/15

(r - 1)² = 1

√(r - 1)² = √1

r - 1 = ±1

r = 1 ± 1

Either

r = 1 + 1

r = 2

or,

r = 1 - 1

r = 0

Since, they are positive integer. So, we will neglect 0

Finding value of x

x = (15)² - 15 + 14/15 + 1

x = 225 - 15 + 14/16

x = (225 + 14) - 15/16

x = 239 - 15/16

x = 224/16

x = 28/2

x = 14


mddilshad11ab: nice
Similar questions