Math, asked by Saby123, 9 months ago

Let p(x) = 0 be a fifth degree polynomial equation with it's linear coefficents that has atleast 1 integral root .


If p(2) = 13 and p(10) = 5, Compute the value of x , that must satisfy p(x) = 0​

Answers

Answered by shadowsabers03
17

Let,

\longrightarrow p(x)=(x-a)\,q(x)

for a\in\mathbb{Z}, where q(x) is a fourth degree polynomial having integer coefficients.

As per the question,

\longrightarrow p(2)=13

\longrightarrow (2-a)\,q(2)=13

Since a\in\mathbb{Z}, so are 2-a and q(2) since q(x) has integer coefficients. Thus we have two possibilities.

  • 1\times13=13

  • -1\times-13=13

And also,

\longrightarrow p(10)=5

\longrightarrow (10-a)\,q(10)=5

Since a\in\mathbb{Z}, so are 10-a and q(10) since q(x) has integer coefficients. Thus again we have two possibilities.

  • 1\times5=5

  • -1\times-5=5

We have to make cases by putting each possible value for 2-a,\ 10-a,\ q(2) and q(10) from these possibilities to check where we get a valid value for a.

To avoid such cases we consider the following.

\longrightarrow (2-a)-(10-a)=-8

So we're sure 2-a and 10-a can't be \pm1.

Also,

\longrightarrow (-13)-(-5)=-8

Thus, without loss of generality, let,

\longrightarrow2-a=-13\quad;\quad 10-a=-5

Therefore, we get,

\longrightarrow \underline{\underline{a=15}}

I.e., p(x)=0 for \bf{x=15.}

Hence 15 is the answer.

Answered by Anonymous
41

Step-by-step explanation:

Answer:

\huge {\purple {\fbox {\bigstar {\mathfb {\red {hello\:mate}}}}}}

___________________________________________________

\huge {\purple {\fbox {\bigstar {\mathfb {\red {ur\: question}}}}}}

\huge {\mathfb{\purple {Q.}}}}Let p(x) = 0 be a fifth degree polynomial equation with it's linear coefficents that has atleast 1 integral root .

If p(2) = 13 and p(10) = 5, Compute the value of x , that must satisfy p(x) = 0

___________________________________________________

\huge {\purple {\fbox {\bigstar {\mathfb {\red {ur\: ANSWER✓}}}}}}

Let,

 \tt\implies p(x)= (x-a)×q(x)

 \tt\implies (x-a)×q(x)

\red{\text{q(x)q(x)\: is\: a \:fourth\: degree\: polynomial\: having \:integer \:coefficients}} .

\sf\green{\text{according\:to\:the\:question}}

 \tt\implies (2-a)q(2)

 \tt\implies =13(2-a)×q(2)=13

\green{\text{Since a\in\mathbb{Z},,\: so \:are \:(2-a)\:(2-a) \:and \:q(2)q(2).}}

\green{\text{since \:q(x)q(x) \:has \:integer\: coefficients}}

\purple{\text{Thus\: we\: have\: two\: possibilities}}

 \tt\implies 1×13=13

 \tt\implies (-1)×(-13)=13

\tt\red{\text{also,}}

 \tt\implies p(10)=5

 \tt\implies p(10)=5

 \tt\implies (10-a)}q(10)

 \tt\implies 5=>(10-a) q(10)=5

\pink{\text{Since \:a\in\mathbb{Z},,\: so \:are \:(10-a)(10-a)\: and\: q(10)q(10)}}

\pink{\text{since\: q(x)q(x) \:has\: integer\: coefficients}}

\pink{\text{. Thus\: again\: we \:have \:two\: possibilities.}}

 \tt\implies 1×5=5

 \tt\implies   -1 × -5=5

We have to make cases by putting each possible value for 2-a, 10-a, q(2)2-a, 10-a, q(2) and q(10)q(10) from these possibilities to check where we get a valid value for a.a.

\pink{\text{to\: not\: get \:error\: consider \:the \:following :}}

 \tt\implies (2-a)-(10-a)=-8

\sf\red{\text{so\:we\:now\:know}}

 \tt\implies (2-a),(2-a) and (10-a)(10-a) can't\: be 1±1.

\tt\red{\text{and also}}

 \tt\implies (-13)-(-5)=-8

\sf\red{\text{know\:let,}}

 \tt\implies (2-a)=-13,\: (10-a)= -5

 \tt\implies a=15

\blue{\text{I.e., p(x)=0 for \bf{x=15.}}}

.

Hence

\sf{\blue{\fbox{\purple{\bigstar{\mathbf{\red{therefore\:a=15}}}}}}}

___________________________________________________

ʙᴇ ʙʀᴀɪɴʟʏ

\huge\mathfb\red{hope\:it\:helps\:you}

Similar questions