let p(x) be the polynomial such that p(1)=1 and p(2) =7 find the remainder when p(x) is divided by x²-3x+2
Answers
Answer:
یہ سب انجیکشن گی س۵ع۶تئططچجزتسفئکئلبمچھع۴۴اردو رحمان کا بلاگ پر تشریف لائے ۵اور ۴اردو ۴اور ۴اردو ۳اردو
Answer:
If f(x) is divided by (x + 2) and the remainder is – 19
then f(x) = (x + 2)(something) – 19
NOTE: f( – 2) will equal – 19
_______________________________________________
If f(x) is divided by (x – 1) and the remainder is 2
then f(x) = (x – 1) (something else) + 2
NOTE: f(1) will equal 2
_________________________________________________
When we divide by a quadratic factor the remainder is not
just a number it is a linear term such as Ax + B
So when f(x) is divided by (x + 2)(x – 1) we get:
f(x) = (x + 2)(x – 1)(something) + Ax + B
________________________________________________
Substituting x = 1 we get:
f(1) = 0 + A + B = 2
Substituting x = – 2 we get:
f(– 2) = 0 – 2A + B = – 19
_________________________________________________
Subtracting these equations: A + B = 2 and – 2A + B = – 19
we get: 3A = 21
so A = 7
and B = – 5
The remainder will be 7x – 5