Let R1 and R 2 be the remainders when the polynomial f(x)= 4x3 + 3x2 - 12ax - 5 and g(x)= 2x3 + ax2 - 6x + 2 are divided by (x-1)and (x+2)respectively. If 3R1 + R2 + 28=0, find the value of a.
Answers
Answered by
182
(x-1)=0
=> x= 1
f(X) = 4x^3 +3x^2 -12ax -5
=> f(1) = 4(1)^3 + 3(1)^2 - 12 a(1) -5
= 4+3-12a -5
= 4+3-5 -12a
= 7-5-12a
= 2-12a
_______(i)
(x+2)= 0
x= -2
f(x) = 2[tex] x^{3} + a x^{2} -6x +2
f(-2) = 2 (-2)^{3} + a (-2)^{2} - 6(-2) +2[/tex]
= 2 (-8) +4 a+12 +2
= -16 +12 +2 +4a
= -16 +14 +4a
= -2 +4a
__________(ii)
given,
3
=> 3(2-12a) + (-2+4a) +28 = 0
=> 6-36a +(-2+4a) + 28 = 0
=> 6-2+28-36 a+4a = 0
=> 4+28-36 +4a= 0
=> 32 - 32a = 0
=> -32a = -32
=> a= 1
=> x= 1
f(X) = 4x^3 +3x^2 -12ax -5
=> f(1) = 4(1)^3 + 3(1)^2 - 12 a(1) -5
= 4+3-12a -5
= 4+3-5 -12a
= 7-5-12a
= 2-12a
_______(i)
(x+2)= 0
x= -2
f(x) = 2[tex] x^{3} + a x^{2} -6x +2
f(-2) = 2 (-2)^{3} + a (-2)^{2} - 6(-2) +2[/tex]
= 2 (-8) +4 a+12 +2
= -16 +12 +2 +4a
= -16 +14 +4a
= -2 +4a
__________(ii)
given,
3
=> 3(2-12a) + (-2+4a) +28 = 0
=> 6-36a +(-2+4a) + 28 = 0
=> 6-2+28-36 a+4a = 0
=> 4+28-36 +4a= 0
=> 32 - 32a = 0
=> -32a = -32
=> a= 1
Answered by
58
Answer:
Value of a is 1.
Step-by-step explanation:
Given polynomials,
f(x) = 4x³ + 3x² - 12ax - 5 and g(x) = 2x³ + ax² - 6x + 2
R1 and R2 is remainder when polynomials divided by x - 1 and x + 2
3 × R1 + R2 + 28 = 0
To find: Value of a.
Using Remainder theorem which states that if a polynomial p(x) is divisible by polynomial of form x - a then remainder is given by p(a).
According tot remainder theorem,
R1 = f( 1 ) = 4(1)³ + 3(1)² - 12a(1) - 5 = 4 + 3 - 12a - 5 = 2 - 12a
R2 = g( -2 ) = 2(-2)³ + a(-2)² - 6(-2) + 2 = -16 + 4a + 12 + 2 = 4a - 2
Now,
3 × R1 + R2 + 28 = 0
3( 2 - 12a ) + 4a - 2 + 28 = 0
6 - 36a + 4a + 26 = 0
-32a = -32
a = 1
Therefore, Value of a is 1.
Similar questions