Let's see who can solve it:
Best answer will be marked as brainliest......
solve the value of x:
4x^2-4a^2+(a^4-b^4)=0
(with solution)
nimilpriyesh999:
x=b^2/2-a
Answers
Answered by
177
Given Equation is 4x^2 - 4a^2 + (a^4 - b^4) = 0
4x^2 - 4a^2 + a^4 - b^4 = 0
a^4 - b^4 + 4x^2 - 4a^2 = 0
a^4 - b^4 + 4x^2 = 4a^2
-b^4 + 4x^2 = -a^4 + 4a^2
4x^2 = -a^4 + 4a^2 + b^4
Hope this helps!
4x^2 - 4a^2 + a^4 - b^4 = 0
a^4 - b^4 + 4x^2 - 4a^2 = 0
a^4 - b^4 + 4x^2 = 4a^2
-b^4 + 4x^2 = -a^4 + 4a^2
4x^2 = -a^4 + 4a^2 + b^4
Hope this helps!
Answered by
121
4x² - 4a² + a⁴ - b⁴ = 0
4x² = 4a² - a⁴ + b⁴
x² = (4a² - a⁴ + b⁴)/4
take square root both sides,
x = ±√(4a² - a⁴ + b⁴)/√4
x = ±√(4a² - a⁴ + b⁴)/2
hence, √(4a² - a⁴ + b⁴)/2 and -√(4a² - a⁴ + b⁴)/2 are the values of x
4x² = 4a² - a⁴ + b⁴
x² = (4a² - a⁴ + b⁴)/4
take square root both sides,
x = ±√(4a² - a⁴ + b⁴)/√4
x = ±√(4a² - a⁴ + b⁴)/2
hence, √(4a² - a⁴ + b⁴)/2 and -√(4a² - a⁴ + b⁴)/2 are the values of x
Similar questions