Math, asked by manvisankhla05, 7 months ago

let sum of first n term of two ap are in the ratio 2n+1/3n-1 . Find ratio of there 11 th term .....plz someone tell na​

Answers

Answered by amansharma264
22

  \sf \to \green{{ \underline{ \underline{answer \ratio}}}} \\  \\  \sf \to \: 11th \: term \: of \: an \: ap \:  =  \frac{43}{62}

 \sf \to \:  \orange{{ \underline { \underline{step  - \: by  - \: step  - \: explanation \ratio}}}}

 \sf \to \: sum \: of \: ratio \: of \: n \: terms \:  =  \dfrac{2n + 1}{3n - 1}  \\  \\  \sf \to \: formula \: of \: sum \: of \: n \: terms \\  \\  \sf \to \:  s_{n} \:  =  \dfrac{n}{2} (2a \:  + (n - 1)d) \\  \\  \sf \to \:  \frac{ s_{n} }{ s_{n} {}^{1}  }  =  \frac{ \dfrac{n}{2}(2a \:  + (n - 1)d }{ \frac{n}{2}(2a {}^{1}  + (n - 1)d {}^{1}  } =  \frac{2n + 1}{3n - 1}   \\  \\  \sf \to \:  \frac{  s_{n} }{ s_{n} {}^{1} }  =  \frac{2a + (n - 1)d}{2a {}^{1}  + (n - 1) {d}^{1} }  \\  \\  \sf \to \:  \frac{ s_{n} }{ s_{n} {}^{1}  }  =  \frac{a \:  + ( \dfrac{n - 1}{2})d }{ {a}^{1}  +  (\dfrac{n - 1}{2} )d {}^{1} }  \\  \\  \sf \to \: 11th \: term \: of \: an \: ap \:  = a \:  + 10d \\  \\  \sf \to \:  \dfrac{ t_{11 } }{ t_{11} {}^{1}  }  =  \dfrac{a + 10d}{ {a}^{1}  + 10d {}^{1} } \\  \\  \sf \to \:   \frac{n - 1}{2} =  10 \\  \\  \sf \to \: n \:  = 21 \\  \\  \sf \to \:  \dfrac{ t_{11} }{ t_{11 {}^{1} }}  =  \dfrac{a + 10d}{ {a}^{1}  + 10d {}^{1} } = \:  \dfrac{2n + 1}{3n - 1} \\  \\  \sf \to \:  \frac{ t_{11}}{ t_{11} {}^{1}  } =  \frac{2 \times 21  +  1}{3 \times 21 - 1 }    =  \frac{43}{62}  \\  \\  \sf \to \:  \green{{ \underline{11th \: term \: of \: an \: ap \: in \: ratio \:  =  \frac{43}{62} }}}

Answered by sharanyalanka7
1

Answer:

Step-by-step explanation:

Let the two series' be T  

n

​  

 and T  

n

​  

 with first terms a and a  

 and common differences d and d  

 

The ratio of the sums of the series' S  

n

​  

 and S  

n

​  

 is given as,

S  

n

​  

 

S  

n

​  

 

​  

=  

[n/2][2a  

+[n−1]d  

]

[n/2][2a+[n−1]d]

​  

=  

4n+27

7n+1

​  

 

Or,

a  

+[(n−1)/2]d  

 

a+[(n−1)/2]d

​  

=  

4n+27

7n+1

​  

 ...(1)

We have to find,  

T  

11

​  

 

T  

11

​  

 

​  

=  

a  

+10d  

 

a+10d

​  

 

Choosing (n−1)/2=10 or n=21 in (1) we getT  

11

​  

 

​  

=  

a  

+10d  

 

a+10d

​  

=  

4(21)+27

7(21)+1

​  

=  

111

148

​  

=  

3

4

​  

.

Hence, option A.

Similar questions