Math, asked by Anonymous, 6 months ago

Let \alpha and \beta be the roots of quadratic equation, x²sin∅ - x(sin∅cos∅ + 1) + cos∅ = 0 where ∅ \epsilon (0,45) and \alpha < \beta. Find the value of :
  \sf {}^{ \infty } \sum_{{n = 0}}  \bigg( { \alpha }^{n}  +  \dfrac{( - 1) {}^{n} }{ \beta  {}^{n} }  \bigg)

Answers

Answered by Anonymous
36

QUESTION

Let \alpha and \beta be the roots of quadratic equation, x²sin∅ - x(sin∅cos∅ + 1) + cos∅ = 0 where ∅ \epsilon (0,45) and \alpha < \beta. Find the value of :

 \sf {}^{ \infty } \sum_{{n = 0}} \bigg( { \alpha }^{n} + \dfrac{( - 1) {}^{n} }{ \beta {}^{n} } \bigg)

ANSWER

 =  \sf  \dfrac{1}{1 -  \cos∅      }  +  \dfrac{1}{1  +   \dfrac{  1}{  \sin∅  } }

SOLUTION

First we need to find the value of \alpha and \beta

Given -

x²sin∅ - x(sin∅cos∅ + 1) + cos∅ = 0

• where ∅ \epsilon (0,45) and \alpha < \beta

Let's solve it -

• x²sin∅ - x(sin∅cos∅ + 1) + cos∅ = 0

★We will take xsin∅ and -1 common

• xsin∅ (x - cos∅ ) -1 (x - cos∅) = 0

★ We will take x - cos∅ common

• ( xsin∅-1 ) ( x - cos∅ ) = 0

★ Now ( xsin∅-1 ) = 0 ; ( x - cos∅ ) = 0

\alpha = Cos∅ and \beta = Cosec∅

( ∵ For 0 < θ < 40 ,1 √2 < cosθ < √2 < cosecθ < ∞ ⇒cosθ < cosecθ)

We know that \alpha &lt; \beta

Now,

\sf {}^{ \infty } \sum_{{n = 0}} \bigg( { \alpha }^{n} + \dfrac{( - 1) {}^{n} }{ \beta {}^{n} } \bigg)

\sf  =  (1 +  \alpha  +  { \alpha }^{2}  +  { \alpha }^{3}  + .. \infty ) + (1 -  \frac{1}{ \beta }  +  \frac{1}{ { \beta }^{2} }  -   \frac{1}{ { \beta }^{3} }  + .. \infty )

 =  \sf  \dfrac{1}{1 -  \alpha }  +  \dfrac{1}{1 - ( \dfrac{ - 1}{ \beta } )}

 =  \sf  \dfrac{1}{1 -  \alpha }  +  \dfrac{1}{1  +   \dfrac{  1}{ \beta } }

Now we know that \alpha = Cos∅ and \beta = Sin∅

 =  \sf  \dfrac{1}{1 -  \cos∅      }  +  \dfrac{1}{1  +   \dfrac{  1}{  \sin∅  } }

Similar questions