Math, asked by Swarup1998, 9 months ago

Let X be a discrete random variable whose spectrum consists of x_{i}=(-1)^{i+1}\frac{3^{i}}{i}, i=1,2,... and f_{i}=P(X=x_{i})=\frac{2}{3^{i}}, i=1,2,... Show that E(X) does not exist.​

Answers

Answered by shrikanth308
1

Answer:

Let XX be a discrete random variable whose spectrum consists of x_{i}=(-1)^{i+1}\frac{3^{i}}{i},xi=(−1)i+1i3i, i=1,2,...i=1,2,... and f_{i}=P(X=x_{i})=\frac{2}{3^{i}},fi=P(X=xi)=3i2, i=1,2,...i=1,2,... Show that E(X)E(X) does not exist.

Step-by-step explanation:

Let XX be a discrete random variable whose spectrum consists of x_{i}=(-1)^{i+1}\frac{3^{i}}{i},xi=(−1)i+1i3i, i=1,2,...i=1,2,... and f_{i}=P(X=x_{i})=\frac{2}{3^{i}},fi=P(X=xi)=3i2, i=1,2,...i=1,2,... Show that E(X)E(X) does not exist.

Answered by minnunannu2
3

Answer:

ooh yaar can you please mark me as brainliest

Similar questions