Let U={0, 1, 2, 3, 4, 5, 6, 7}, A={1, 3, 5, 7} and B={0, 2, 3, 5, 7}, find the following sets.
(i) A′ (ii) B′ (iii) A′∪B′ (iv)A′∩B′ ( v)(A∪B)′
(vi) (A∩B)′ (vii) (A′)′ (viii) (B′)′
Answers
Answered by
13
Solution:-
given by sets:-
U={0, 1, 2, 3, 4, 5, 6, 7}, A={1, 3, 5, 7} and B={0, 2, 3, 5, 7},
(i) A'
》ans :- A' = { 0,2,4,6}
》(i) B'
ans:- B' = { 1,4,6}
(iii) A′∪B′
》ans:- A' = {0, 2,4,6} B' = { 1, 4,6,}
》A′∪B′ = { 0,1,2,4,6}
》(iv) A′∩B'
ans :- A' = {0, 2,4,6} B' = { 1, 4,6,}
》A′∩B' = { 4,6}
(v) (A∪B)′
》ans:- (A∪B) = {0, 1, 2, 3, 4, 5, 6, 7},
》 here U = { x: x is whole numbers}
》 (A∪B)' = {8, 9,10,11,....},
(vi) (A∩B)′
》here A={1, 3, 5, 7} B={0, 2, 3, 5, 7},
ans:-
》 A∩B = {3,5,7} here , U = {x:x is an odd prime numbers },
》(A∩B)′ = { 11,13,17.}
(vii) (A′)′
》ans :-
》 here A' = { 0,2,4,6} , U= { x:x is even numbers}
》then (A′)′ = { 8,10,12,14}
(viii) (B′)′
》ans:-
》here B' = { 1,4,6} U = {0, 1, 2, 3, 4, 5, 6, 7},
》(B′)′ = { 0,2,3,5,6,7}
here , A' and B' are complementary set
Complementary set :- The complement of a set, denoted A', is the set of all elements in the given universal set U that are not in A.
In set- builder notation, A' = {x ∈ U : x ∉ A}.
☆i hope its help☆
given by sets:-
U={0, 1, 2, 3, 4, 5, 6, 7}, A={1, 3, 5, 7} and B={0, 2, 3, 5, 7},
(i) A'
》ans :- A' = { 0,2,4,6}
》(i) B'
ans:- B' = { 1,4,6}
(iii) A′∪B′
》ans:- A' = {0, 2,4,6} B' = { 1, 4,6,}
》A′∪B′ = { 0,1,2,4,6}
》(iv) A′∩B'
ans :- A' = {0, 2,4,6} B' = { 1, 4,6,}
》A′∩B' = { 4,6}
(v) (A∪B)′
》ans:- (A∪B) = {0, 1, 2, 3, 4, 5, 6, 7},
》 here U = { x: x is whole numbers}
》 (A∪B)' = {8, 9,10,11,....},
(vi) (A∩B)′
》here A={1, 3, 5, 7} B={0, 2, 3, 5, 7},
ans:-
》 A∩B = {3,5,7} here , U = {x:x is an odd prime numbers },
》(A∩B)′ = { 11,13,17.}
(vii) (A′)′
》ans :-
》 here A' = { 0,2,4,6} , U= { x:x is even numbers}
》then (A′)′ = { 8,10,12,14}
(viii) (B′)′
》ans:-
》here B' = { 1,4,6} U = {0, 1, 2, 3, 4, 5, 6, 7},
》(B′)′ = { 0,2,3,5,6,7}
here , A' and B' are complementary set
Complementary set :- The complement of a set, denoted A', is the set of all elements in the given universal set U that are not in A.
In set- builder notation, A' = {x ∈ U : x ∉ A}.
☆i hope its help☆
Similar questions