Math, asked by paulsharon333, 3 months ago

let u =log(x^2+y^2+z^2),prove that (d^2u/dx^2)+(d^2u/dy^2)(d^2u/dz^2)=2/(x^2+y^2+z^2)

Answers

Answered by PharohX
3

Step-by-step explanation:

 \sf \: u =  log( {x}^{2}  +  {y}^{2}  +  {z}^{2} )

 \sf \:  \frac{ \partial u}{ \partial x}  =  \frac{1}{ {x}^{2}  +  {y}^{2} +  {z}^{2}  } (2x + 0 + 0) \\

 \sf \:  \frac{ \partial u}{ \partial x}  =  \frac{2x}{ {x}^{2}  +  {y}^{2} +  {z}^{2}  }  \\

 \sf \:  \frac{ \partial ^{2}  u}{ \partial ^{2} x}  =  2\frac{1( {x }^{2}  +  {y}^{2} +  {z}^{2} ) - x(2x) }{ ({x}^{2}  +  {y}^{2} +  {z}^{2}  ) {}^{2} }  \\

 \sf \:  \frac{ \partial ^{2}  u}{ \partial ^{2} x}  =  2\frac{{ - x }^{2}  +  {y}^{2} +  {z}^{2}  }{ ({x}^{2}  +  {y}^{2} +  {z}^{2}  ) {}^{2} }  \:  \: ....(i) \\

 \large \sf \:  \green{ \underline{ \sf \: SIMILARLY : -  }}

 \sf \:  \frac{ \partial ^{2}  u}{ \partial ^{2} y}  =  2\frac{{ x }^{2}   -   {y}^{2} +  {z}^{2}  }{ ({x}^{2}  +  {y}^{2} +  {z}^{2}  ) {}^{2} }  \:  \:  \:  \:  \: ......(ii) \\

 \sf \:  \frac{ \partial ^{2}  u}{ \partial ^{2} z}  =  2\frac{{ x }^{2}    +   {y}^{2}  -   {z}^{2}  }{ ({x}^{2}  +  {y}^{2} +  {z}^{2}  ) {}^{2} } \:  \:  \:  \: .....(iii)  \\

 \sf \:  \frac{ \partial ^{2}  u}{ \partial ^{2} x}   +  \frac{ \partial ^{2}  u}{ \partial ^{2} y}   +  \frac{ \partial ^{2}  u}{ \partial ^{2} z}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\   \sf \: =  2\frac{{ - x }^{2}  +  {y}^{2} +  {z}^{2}  }{ ({x}^{2}  +  {y}^{2} +  {z}^{2}  ) {}^{2} }  + 2\frac{{ x }^{2}   -   {y}^{2} +  {z}^{2}  }{ ({x}^{2}  +  {y}^{2} +  {z}^{2}  ) {}^{2} }  \sf \:    +  2\frac{{ x }^{2}    +   {y}^{2}  -   {z}^{2}  }{ ({x}^{2}  +  {y}^{2} +  {z}^{2}  ) {}^{2} }

 \sf \:  =  2 \bigg(\frac{{  - x }^{2}    +  {y}^{2} +  {z}^{2} + {x}^{2}  -   {y }^{2}  +  {z}^{2}    +  {x}^{2}  +  {y}^{2} -  {z}^{2}  }{ ({x}^{2}  +  {y}^{2} +  {z}^{2}  ) {}^{2} }  \bigg) \\

 \sf \:  = 2 \frac{ {x}^{2} +  {y}^{2}   +  {z}^{2} }{( {x}^{2} +  {y}^{2}  +  {z}^{2}  ) {}^{2} }  \\

 \sf =  \frac{2}{( {x}^{2}  +  {y}^{2} +  {z}^{2}  )}  \\

 \sf \large{ \green{  \sf \: proved}}

Similar questions