Let u, v and w be vectors such that u + v + w = 0. If |u| = 3 |v| = 4 and |w| = 5, then u.V + v.W + w.U is equal to
Answers
Answered by
28
Let u, v and w be vectors such that u + v + w = 0. If |u| = 3 |v| = 4 and |w| = 5, then u.v + v.w + w.u is equal to
it is given that, u + v + w = 0
⇒(u + v + w)² = 0
we know, (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒u² + v² + w² + 2(u.v + v.w + w.u) = 0
⇒2(u.v + v.w + w.u) = -(|u|² + |v|² + |w|²)
putting the values of |u|, |v| and |w|,
⇒2(u.v + v.w + w.u) = -(3² + 4² + 5²)
⇒2(u.v + v.w + w.u) = -(9 + 16 + 25) = -50
⇒u.v + v.w + w.u = -50/2 = -25
hence, u.v + v.w + w.u = -25
Answered by
1
Answer: -25
Step-by-step explanation:
Given,
∣u∣=3,∣v∣=4 and ∣w∣=5
Also, u+v+w=0
On squaring both sides, we get
∣u∣ 2+∣v∣ 2+∣w∣ 2+2(u.v+v.w+w.u)=0
⇒3 ^2 +4 ^2+5 ^2 +2(u.v+v.w+w.u)=0
⇒9+16+25+2(u.v+v.w+w.u)=0
⇒u.v+v.w+w.u=-25
Similar questions