Math, asked by bandavaishu99, 5 months ago

Let u(x,y)= 2x(1-y) for all x,y e []. Then v(x,y) such that f(z)=u(x,y)+iv(x,y) is analytic is,

Answers

Answered by PharohX
15

GIVEN :-

  •  \sf \: u(x,y)= 2x(1-y)

Such that.

  •  \sf \: f(z)=u(x,y)+iv(x,y)  \: is \:  analytic

TO FIND :-

  •  \sf \: \: v(x,y)  =

 \sf \: Let \:  \:  f(z) = u + iv

 \sf \: If \:  \:  it  \:  \: is \:  \:  analytic \:  \:  then  \:  \: its  \:  \: derivative  -

 \sf \: f'(z) =  \frac{ \partial u}{  \partial x}  - i \frac{ \partial v}{  \partial x} \:  \:  \:  \:  \:  \:  \:  \:  .....(i)  \\

 \sf \: Also \:  \:  by  \:  \: Cauchy \:  \:  Remman  \:  \: Equation

 \sf \: 1. \:  \:  \green{ \sf \frac{ \partial u}{  \partial x}   =  \frac{ \partial v}{  \partial y} }  \:  \:  \: and\\

  \sf \: 2. \:  \: \green{ \sf\frac{ \partial v}{  \partial x}   =  -  \frac{ \partial u}{  \partial y}  } \\

 \sf \: Put \: 2. \:  \: cauchy \: eq. \: into \: eq. \:( i)

 \sf \: f'(z) =  \frac{ \partial u}{  \partial x}  -  \bigg(i \frac{  - \partial u}{  \partial y}  \bigg)\:  \\

 \sf \: f'(z) =  \frac{ \partial u}{  \partial x}   +   \bigg(i \frac{   \partial u}{  \partial y}  \bigg)\:  \:  \:  \:  \:  \:  \:  \:  .....(ii)  \\

 \sf \: First \:  \:  -

 \sf \:  \frac{ \partial u }{ \partial x}  = \frac{ \partial }{ \partial x}(2x(1 - y)) \\

 \implies \sf \:  \frac{ \partial u }{ \partial x}  = \frac{ \partial }{ \partial x}(2x -2x y) \\

 \implies \sf \:  \frac{ \partial u }{ \partial x}  = (2 -2y) \\

 \sf \: Second -

 \sf \:  \frac{ \partial u }{ \partial y}  = \frac{ \partial }{ \partial y}(2x(1 - y)) \\

 \implies \sf \:  \frac{ \partial u }{ \partial y}  = \frac{ \partial }{ \partial y}(2x -2x y) \\

 \implies \sf \:  \frac{ \partial u }{ \partial y}  = ( -2x) \\

 \sf \: Putting  \:  \: the \:  \:  value  \:  \: in  \:  \: eq. (ii)

 \sf \: f'(z) =  \frac{ \partial u}{  \partial x}   +   i\bigg( \frac{   \partial u}{  \partial y}  \bigg)\:  \\

 \sf \: f'(z) =  (2 - 2y) + i( - 2x) \\

 \sf \: f'(z) =  2 - 2y  - 2ix\\

 \sf \: NOW  \: replace \: ( x,y) \:  by  \: (z ,0)

 \sf \: f'(z) =  2 - 2(0)  - 2i(z)\\

 \sf \: where  \: z = x + iy

 \sf \: f'(z) =  2  - 2i(z)\\

 \sf \: Now  \:  \: integrating \:  \:  w.r.t \: (z)

 \sf \: f(z) =  \int( 2  - 2iz)dz\\

 \sf \: f(z) = 2z - 2i( \frac{ {z}^{2} }{2} ) + c \\

 \sf \: f(z) = 2z - i {z}^{2}  + c \\

 \sf \: Put  \: z=x + iy

 \sf \: f(z) = 2(x + iy)- i {( x - iy)}^{2}  + c \\

 \sf \: f(z) = 2x + 2iy- i ( {x}^{2} - 2ixy  + (iy) {}^{2})  + c \\

 \sf \: f(z) = 2x + 2iy- i {x}^{2}   - 2xy    + i (y) {}^{2}  + c \\

 \sf \: f(z) = 2x    - 2xy  +   2iy- i {x}^{2} + i (y) {}^{2}  + c \\

 \sf \: f(z) = 2x (1   - y)  +  i( 2y-  {x}^{2} + y{}^{2} ) + c \\

 \sf \: f(z) = real \:  + imaginary \:  \: part

 \sf \: By \:  \:  comparison -

 \sf \: f(z)=u(x,y)+iv(x,y)

 \green{ \boxed{ \sf \: v(x,y)   = 2y -  {x}^{2}  +  {y}^{2} }}

Similar questions