Math, asked by jasschaudhary2015, 1 month ago

the angle between the straight lines represented by the equation y ^2 - xy - 6x^2 =0 is​

Answers

Answered by chsumanth88762
0

Answer:

hi

Step-by-step explanation:

the answer is in the attachment.

Attachments:
Answered by Itsmahi001
109

\sf{Let  \: 2 \:  line \:  represented  \: by  \:  {ax}^{2} +2hxy+ {by}^{2}  = 0:-}

\sf{y = m1x}

\sf{y=m2x}

Where,

\sf{m1+m2 = \frac{ - 2h}{b} }---(1)

\sf{And, m1m2 =  \frac{a}{b} }---(2)

\sf{Let  \: θ \:  be  \: angle \:  between \:  two  \: lines}

\sf{tanθ=  \frac{  + 2\sqrt{ {h}^{2}  -ab } }{a + b}} -  -  -  (3)

Calculation:-

\sf{Given \:  equation  \: is:-}

\sf{ {y}^{2}  - xy -  {6x}^{2}  = 0}

\sf{Compare  \: it  \: with  \: standard  \: equation}

\sf{ {ax}^{2}  + 2hxy  +  {by}^{2} } = 0

\sf{b = 1.a =  - 6.h =  \frac{ - 1}{2}}

From equ.1)

\sf{tan \: θ= \frac{ + 2 \sqrt{ (\frac{ { - 1} }{2} )^{2 }  - ( - 6)(1)} }{ - 6 + 1} }

\sf{tanθ= \frac{ + 2 \sqrt{ \frac{1}{4}  + 6} }{ - 5} }

\sf{tanθ= \frac{ + 2  \times  \frac{5}{2} }{ - 5}  = ±1}

\sf{θ=45°}

Similar questions