Math, asked by maheshreddy9666g, 9 days ago

Let U={(x,y,z)}:x+3y+z=0} and V= {(x,y,z):x+y-z=0} be the subspaces of R^3, find a basis for UUW and U+W

Answers

Answered by anmolsumitra2010
0

Given :-

The lateral surface area of a cylinder is 132 cm² and its height is 7 cm.

To Find :-

What is the base diameter of a cylinder.

Formula Used :-

\clubsuit♣ Lateral Surface Area or Curved Surface Area Of Cylinder Formula :

\begin{gathered}\bigstar \: \: \sf\boxed{\bold{\pink{L.S.A_{(Cylinder)} =\: 2{\pi}rh}}}\: \: \: \bigstar\\\end{gathered}

L.S.A

(Cylinder)

=2πrh

where,

π = Pie or 22/7

r = Radius

h = Height

Solution :-

First, we have to find the radius of a cylinder :-

Given :

Height = 7 cm

Lateral Surface Area = 132 cm²

According to the question by using the formula we get,

\implies \bf L.S.A_{(Cylinder)} =\: 2{\pi}rh⟹L.S.A

(Cylinder)

=2πrh

\begin{gathered}\implies \sf 132 =\: 2 \times \dfrac{22}{7} \times r \times 7\\\end{gathered}

⟹132=2×

7

22

×r×7

\implies \sf 132 =\: \dfrac{44}{7} \times 7r⟹132=

7

44

×7r

\implies \sf 132 \times \dfrac{7}{44} =\: 7r⟹132×

44

7

=7r

\implies \sf \dfrac{\cancel{924}}{\cancel{44}} =\: 7r⟹

44

924

=7r

\implies \sf 21 =\: 7r⟹21=7r

\implies \sf \dfrac{\cancel{21}}{\cancel{7}} =\: r⟹

7

21

=r

\implies \sf 3 =\: r⟹3=r

\implies \sf\bold{\purple{r =\: 3\: cm}}⟹r=3cm

Now, we have to find the base diameter of a cylinder :

Given :

Radius = 3 cm

According to the question by using the formula we get,

\begin{gathered}\dashrightarrow \sf\boxed{\bold{\pink{Diameter =\: 2 \times Radius}}}\\\end{gathered}

Diameter=2×Radius

\dashrightarrow \sf Diameter =\: 2 \times 3\: cm⇢Diameter=2×3cm

\dashrightarrow \sf\bold{\red{Diameter =\: 6\: cm}}⇢Diameter=6cm

\therefore∴ The base diameter of a cylinder is 6 cm .

Similar questions