Physics, asked by BrainlyHelper, 1 year ago

Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How long will a star at a distance of 50,000 ly from the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be 105 ly. question 8.5 gravitation

Answers

Answered by abhi178
42
Number of stars in our Galaxy (N) = 2.5 × 10¹¹
Mass of each stars = 2 × 10^30kg
So, mass of the stars of the galaxy(M) = 2.5× 10¹¹× 2× 10^30
= 5 × 10⁴¹ Kg
Radius of orbit of a star (r) = 50000 light-years

We know,
1 light years = 9.46 × 10^15 m
So, r = 50000×9.46×10^15 m
= 5 × 9.46 × 10^19 m

Centripital force = Gravitational force
mv²/r = GMm/r²
v² = GM/r
(2πr/T)² = GM/r [ v = 2πr/T
4π²r²/T² = GM/r
T² = 4π²r³/GM
Put the values of r , G and M
T = √{ 4×(3.14)²× (5×9.46×10^19)³/6.67×10^-11×5×10⁴¹}
= 111.93 × 10¹⁴ sec
= 111.93 × 10¹⁴/(365×24×3600) yr
= 3.55 × 10^8 yr
Answered by jack6778
12

Answer:

Mass of our galaxy Milky Way, M = 2.5 × 1011 solar mass

Solar mass = Mass of Sun = 2.0 × 1036 kg

Mass of our galaxy, M = 2.5 × 1011 × 2 × 1036 = 5 × 1041 kg

Diameter of Milky Way, d = 105 ly

Radius of Milky Way, r = 5 × 104 ly

1 ly = 9.46 × 1015 m

∴r = 5 × 104 × 9.46 × 1015

= 4.73 ×1020 m

Since a star revolves around the galactic centre of the Milky Way, its time period is given by the relation:

T = ( 4π2r3 / GM)1/2

= [ (4 × 3.142 × 4.733 × 1060) / (6.67 × 10-11 × 5 × 1041) ]1/2

= (39.48 × 105.82 × 1030 / 33.35 )1/2

= 1.12 × 1016 s

1 year = 365 × 324 × 60 × 60 s

1s = 1 / (365 × 324 × 60 × 60) years

∴ 1.12 × 1016 s = 1.12 × 1016 / (365 × 24 × 60 × 60) = 3.55 × 108 years.

Similar questions