Let us calculate in what ratio is the line segment joining the points (7,3) and (-9,6) divided by the y axis
Answers
Answer:
[tex]
\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}
Answer:−
\sf{The \ line \ is \ divided \ in \ the \ ratio}The line is divided in the ratio
\sf{of \ 7:9}of 7:9
\sf\orange{Given:}Given:
\sf{\implies{Points \ of \ line \ segment \ are}}⟹Points of a line segment are
\sf{(7,3) \ and \ (-9,6)}(7,3) and (−9,6)
\sf\pink{To \ find:}To find:
\sf{In \ which \ ratio \ y-axis \ divides \ the}In which ratio y−axis divides the
\sf{line \ segment.}line segment.
\sf\green{\underline{\underline{Solution:}}}
Solution:
\sf{Co-ordinates \ of \ y-axis \ are \ (0,y)}Co−ordinates of the y−axis are (0,y)
\sf{Here, \ x1=7, \ y1=3, \ x2=-9, \ y2=6}Here, x1=7, y1=3, x2=−9, y2=6
\sf{By \ section \ formula}By section formula
\sf{x=\frac{mx2+nx1}{m+n}}x=
m+n
mx2+nx1
\sf{0=\frac{m(-9)+n(7)}{m+n}}0=
m+n
m(−9)+n(7)
\sf{0=-9m+7n}0=−9m+7n
\sf{9m=7n}9m=7n
\sf{\frac{m}{n}=\frac{7}{9}}
n
m
=
9
7
\sf{\therefore{m:n=7:9}}∴m:n=7:9
\sf\purple{\tt{\therefore{The \ line \ is \ divided \ in \ the \ ratio}}}∴The line is divided in the ratio
\sf\purple{\tt{of \ 7:9}}of 7:9
[//tex]