English, asked by rohan2132, 4 months ago

Let (Vo) and (Ve) represent the orbital velocity and escape velocity of a satellite corresponding to a circular orbit of radius R. Derive the relation between them

Answers

Answered by SrijanShrivastava
1

Using the Conservation of Energy, we can derive the Escape Velocity as:

 \sf U_{i} + K_{i} =  U_{f} + K_{f}

 \sf   - \frac{GMm}{R} +  \frac{1}{2} mv _{esc}^{2} =  -\frac{GMm}{h}  + 0

 \because h   \to \infty

 \boxed{  \sf v_{esc} =  \sqrt{ \frac{2G M_{earth}}{R_{earth}} } }

Now, For Orbital Velocity

 \sf F_{gravitational} = F_{centripetal}

 \sf \frac{mv_{o}^{2} }{2}  =  \frac{GMm}{R}

\boxed{ \sf v _{o} =  \sqrt{ \frac{GM_{earth} }{R} } }

Dividing Both The Equations:

 \sf  \frac{v_{esc} }{v_{o}}  =  \sqrt{ \frac{2R}{R_{earth} } }

 \implies \boxed{  \sf v_{esc}  = v_{o}  \sqrt{ \frac{2R}{R_{earth}} } }

If R=Radius of Earth

  \boxed{ \sf v_{e} =  \sqrt{2} v_{o}}

Answered by Babitamohittyagi
0

Answer:

hii

Explanation:

have a great day ahead ✌️✌️✌️ Rohan

Similar questions