Math, asked by leaonsebastian11, 1 month ago

Let X= 6t^2 – 3t^4 find dx/dt​

Answers

Answered by purnapushkalam1991
1

Answer:

dx/dt=12t-12t^3=12t(1-t^2)

Step-by-step explanation:

let x=ax^n

so dx/dt=nax^n-1

bybusing above formula

dx/dt=6t^2-3t^4=6*2t-3*4t^3=12t-12t^3=12t(1-t^2)

Answered by abhinavmike85
24

\huge{✪}\huge{\underline{\mathcal{Answer}}}

 \dfrac{dx}{dt}  = 12t(1-  {t}^{2} )

\huge{✪}\huge{\underline{\mathcal{Steps:}}}

\large{➣} \dfrac{dx}{dt}   = 6 {t}^{2}  -  3{t}^{4} \\\\

Differentiating both terms, we get:

\large{➣} \dfrac{dx}{dt}  = 6 \times 2 \times  {t}^{(2 - 1)}  - 3 \times 4 \times  {t}^{(4 - 1)}  \\ \\

Multiplying respective terms, we get:

\large{➣} \dfrac{dx}{dt}  = 12t - 12 {t}^{3} \\  \\

Taking out 12t as common, we get:

\large{➣}\dfrac{dx}{dt}  = 12t(1 -  {t}^{2} )

\huge{✪}\huge{\underline{\mathcal{Formulas\:Used:}}}

\large{☞}\dfrac{dx}{dt} a{x}^{n} = a\times n {x}^{n-1}

\\\\\fbox{\fbox{\fbox{\fbox{\huge{\underline{\underline{\sf{\green{Hope\:it\:helps}}}}}}}}}

Similar questions