Math, asked by ROMINDMORE704, 4 months ago

Let X and' be two arbltrary, 3 x 3. non-zero. skew-symmetric ma'u\c.es and Z be an arbitrary 3 x 3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew-symmetric?​

Attachments:

Answers

Answered by amritpalsingh188
1

Answer:

Given: X

T

=−X,Y

T

=−Y and Z

T

=Z

Using Properties of transpose:

(A+B)

T

=A

T

+B

T

and (AB)

T

=B

T

A

T

Option A:

(Y

3

Z

4

−Z

4

Y

3

)

T

=(Y

3

Z

4

)

T

−(Z

4

Y

3

)

T

⇒(Z

4

)

T

(Y

3

)

T

−(Y

3

)

T

(Z

4

)

T

=(Z

T

)

4

(Y

T

)

3

−(Y

T

)

3

(Z

T

)

4

=Y

3

Z

4

−Z

4

Y

3

Its a symmetric.

Option B:

(X

44

+Y

44

)

T

=(X

T

)

44

+(Y

T

)

44

=X

44

+Y

44

Its a symmetric.

Option C:

(X

4

Z

3

−Z

3

X

4

)

T

=(X

4

Z

3

)

T

−(Z

3

X

4

)

T

⇒(Z

3

)

T

(X

4

)

T

−(X

4

)

T

(Z

3

)

T

=(Z

T

)

3

(X

T

)

4

−(X

T

)

4

(Z

T

)

3

=Z

3

X

4

−X

4

Z

3

=−(X

4

Z

3

−Z

3

X

4

)

Its a skew symmetric.

Option D:

(X

23

+Y

23

)

T

=(X

T

)

23

+(Y

T

)

23

=−(X

23

+Y

23

)

Its a skew symmetric.

Hence, option C,D.

Similar questions