Let X, and X, have joint density function f(x,x)=
x > 0.x, > 0
Otherwise
0
Find P(X, <1, X, > 5).
Answers
Answered by
0
Answer:
To find c, we use
∫∞−∞∫∞−∞fXY(x,y)dxdy=1.
Thus, we have
1=∫∞−∞∫∞−∞fXY(x,y)dxdy=∫10∫10x+cy2dxdy=∫10[12x2+cy2x]x=1x=0dy=∫1012+cy2dy=[12y+13cy3]y=1y=0=12+13c.
Therefore, we obtain c=32.
To find P(0≤X≤12,0≤Y≤12), we can write
P((X,Y)∈A)=∬AfXY(x,y)dxdy,for A={(x,y)|0≤x,y≤1}.
Thus,
P(0≤X≤12,0≤Y≤12)=∫120∫120(x+32y2)dxdy=∫120[12x2+32y2x]120dy=∫120(18+34y2)dy=332.
Similar questions