Let x be rational and y be irrational. Is xy necessarily an irrational number? Justify your answer by an example.
Answers
Answered by
2
Answer:
No, (xy) is necessarily an irrational only when x ≠0.
Let x be a non-zero rational and y be an irrational. Then, we have to show that xy be an irrational. If possible, let xy be a rational number. Since, quotient of two non-zero rational number is a rational number.
So,(xy/x) is a rational number => y is a rational number.
But, this contradicts the fact that y is an irrational number. Thus, our supposition is wrong. Hence, xy is an irrational number. But, when x = 0, then xy = 0, a rational number.
PLEASE MARK ME AS A BRAINLIEST
Similar questions