Math, asked by swanhayden7, 1 month ago

Let x belongs to (0, 1), what is the relationship between x and sinx.

Answer with full justification.

No spam please.

Quality answer needed

Mods, stars, genius please answer.

Spammers please far away.

Don't be greedy for points.​​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

As given that

\rm :\longmapsto\:x \:  \in \: (0, \: 1)

We know,

 \red{\boxed{ \rm{ \: 1 \: radian \:  \approx \: 57 \degree \:  \: }}}

\bf\implies \:x \:  \in \:  {1}^{st} \: quadrant

Now, to find the relationship between x and sinx, Let assume that,

\rm :\longmapsto\:f(x) = x - sinx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:f'(x) = 1 - cosx

\rm :\longmapsto\:f'(x) = {2cos}^{2}\bigg[\dfrac{x}{2} \bigg]

\rm :\longmapsto\:f'(x) \geqslant 0

\bf\implies \:f(x) \: is \: increasing

By definition of increasing function,

\rm :\longmapsto\:x > 0

\bf\implies \:f(x)  >  f(0)

\bf\implies \:x - sinx > 0 - sin0

\bf\implies \:x - sinx > 0

\bf\implies \:x > sinx

Basic Concepts

1. For decreasing function,

 \red{\boxed{ \rm{ \: x \geqslant y \:  \implies \: f(x) \leqslant f(y)}}}

 \red{\boxed{ \rm{ \: x \leqslant y \:  \implies \: f(x) \geqslant f(y)}}}

 \red{\boxed{ \rm{ \: x <  y \:  \implies \: f(x)  >  f(y)}}}

 \red{\boxed{ \rm{ \: x  >   y \:  \implies \: f(x)   <   f(y)}}}

2. For increasing function

 \red{\boxed{ \rm{ \: x  >   y \:  \implies \: f(x)  >  f(y)}}}

 \red{\boxed{ \rm{ \: x <y \:  \implies \: f(x)  <   f(y)}}}

 \red{\boxed{ \rm{ \: x \leqslant y \:  \implies \: f(x) \leqslant f(y)}}}

 \red{\boxed{ \rm{ \: x \geqslant y \:  \implies \: f(x) \geqslant f(y)}}}

Similar questions