Math, asked by Aaditya0510, 10 months ago

Let z = (√3/2) - (i/2)
Then the smallest positive integer n such that (z^95 +i^-67)^94 = z^nis
O 12
O 10
O 9
O 8​

Answers

Answered by Shaizakincsem
0

The correct option is (b) 10.

Step-by-step explanation:

From the hypothesis, we have

z=\sqrt{3/2-i/2=i (-\frac{1}{2}- \frac{\sqrt{3} }{2})=iw

Where w= -\frac{1}{2} - i\frac{\sqrt{3} }{2}  which is a cube root of unity.

Now, z^{95} = (iw)^{95} =-iw^{2}

and i^{67} =i^{3} =- i

Therefore, z^{95} + i^{67} =-i (1+ w^{2} )=(-i)(-w)-iw

(z^{95} +i^{67} )^{94} =(iw)^{94} =i^{2}w=-w

Now, -w=z^{n} =(iw)^{n}

i^{n} .w^{n-1} =-1

⇒n=2,6,10,14

and n-1=3,6,9

Hence, n=10  is the required least positive integer.

#SPJ2

Similar questions