Math, asked by gpb, 9 months ago

lets see who can solve this question-

Attachments:

Answers

Answered by shadowsabers03
6

Given,

\longrightarrow\sf{x=1+1-1+1-1+1-1+\dots}

\longrightarrow\sf{x=1+(1-1)+(1-1)+(1-1)+\dots}

\longrightarrow\sf{x=1+0+0+0+\dots}

\longrightarrow\sf{x=1\quad\quad\dots(1)}

Also,

\begin{array}{cccccccccccccccccc}\longrightarrow&\sf{x}&=&\sf{1}&+&\sf{1}&-&\sf{1}&+&\sf{1}&-&\sf{1}&+&\sf{1}&-&\sf{1}&+&\sf{1}-\dots\\\\+&\sf{\dfrac{x}{2}}&=&&&\sf{\dfrac{1}{2}}&+&\sf{\dfrac{1}{2}}&-&\sf{\dfrac{1}{2}}&+&\sf{\dfrac{1}{2}}&-&\sf{\dfrac{1}{2}}&+&\sf{\dfrac{1}{2}}&-&\sf{\dfrac{1}{2}}+\dots\\\\\cline{1-18}\\&\sf{\dfrac{3x}{2}}&=&\sf{1}&+&\sf{\dfrac{3}{2}}&-&\sf{\dfrac{1}{2}}&+&\sf{\dfrac{1}{2}}&-&\sf{\dfrac{1}{2}}&+&\sf{\dfrac{1}{2}}&-&\sf{\dfrac{1}{2}}&+&\sf{\dfrac{1}{2}}-\dots\end{array}

\longrightarrow\sf{\dfrac{3x}{2}=1+\dfrac{3}{2}-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\dots}

\longrightarrow\sf{\dfrac{3x}{2}=1+\dfrac{3}{2}-0-0-0-\dots}

\longrightarrow\sf{\dfrac{3x}{2}=1+\dfrac{3}{2}}

\longrightarrow\sf{\dfrac{3x}{2}=1+1+\dfrac{1}{2}}

From (1),

\longrightarrow\sf{\dfrac{3x}{2}=x+x+\dfrac{1}{2}}

\longrightarrow\sf{\dfrac{3x}{2}=2x+\dfrac{1}{2}}

\longrightarrow\sf{\dfrac{3x}{2}-2x=\dfrac{1}{2}}

\longrightarrow\sf{-\dfrac{x}{2}=\dfrac{1}{2}}

\longrightarrow\sf{x=-1\quad\quad\dots(2)}

Adding (1) and (2),

\longrightarrow\sf{x+x=1-1}

\longrightarrow\sf{2x=0}

\longrightarrow\sf{x=0\quad\quad\dots(3)}

Adding (1) and (3),

\longrightarrow\sf{x+x=1+0}

\longrightarrow\sf{2x=1}

\longrightarrow\sf{\underline{\underline{x=\dfrac{1}{2}}}}

Hence Proved!

Similar questions