Math, asked by sreejithagutti4997, 10 months ago

Lf sinα+sinβ=a and cosα+cosβ=b, then write the value of sin(α+β)

Answers

Answered by soujanna69
0
sin+sin=2sin(+2)cos(−2)=sinα+sinβ=2
sin (
α
+

2
)
cos

(
α

β
2
)
=
a
(1)

cos+cos=2cos(+2)cos(−2)=
cos

α
+
cos

β
=
2
cos

(
α
+
β
2
)
cos

(
α

β
2
)
=
b
(2)

Divide (1) and (2) We get
tan(+2)=
tan

(
α
+
β
2
)
=
a
b
We have the formula

sin(+)=2tan(+2)1+tan2(+2)
sin

(
α
+
β
)
=
2
tan

(
α
+
β
2
)
1
+
tan
2

(
α
+
β
2
)
therefore
sin(+)=21+22=22+2
Similar questions