Lf sinα+sinβ=a and cosα+cosβ=b, then write the value of sin(α+β)
Answers
Answered by
0
sin+sin=2sin(+2)cos(−2)=sinα+sinβ=2
sin (
α
+
2
)
cos
(
α
−
β
2
)
=
a
(1)
cos+cos=2cos(+2)cos(−2)=
cos
α
+
cos
β
=
2
cos
(
α
+
β
2
)
cos
(
α
−
β
2
)
=
b
(2)
Divide (1) and (2) We get
tan(+2)=
tan
(
α
+
β
2
)
=
a
b
We have the formula
sin(+)=2tan(+2)1+tan2(+2)
sin
(
α
+
β
)
=
2
tan
(
α
+
β
2
)
1
+
tan
2
(
α
+
β
2
)
therefore
sin(+)=21+22=22+2
sin (
α
+
2
)
cos
(
α
−
β
2
)
=
a
(1)
cos+cos=2cos(+2)cos(−2)=
cos
α
+
cos
β
=
2
cos
(
α
+
β
2
)
cos
(
α
−
β
2
)
=
b
(2)
Divide (1) and (2) We get
tan(+2)=
tan
(
α
+
β
2
)
=
a
b
We have the formula
sin(+)=2tan(+2)1+tan2(+2)
sin
(
α
+
β
)
=
2
tan
(
α
+
β
2
)
1
+
tan
2
(
α
+
β
2
)
therefore
sin(+)=21+22=22+2
Similar questions