Physics, asked by Anonymous, 10 months ago

Light enters from air to glass having refractive index 1.50. What is the speed of light in the glass? The speed of light in vacuum is 3 x 108 ms-1.​

Answers

Answered by ThakurRajSingh24
31

SOLUTION :-

=>Refractive index of a medium (nm) = Speed of light in vacuum/Speed of light in the medium

=>Speed of light in vacuum (c) = 3 × 108 m/s

=>Refractive index of glass (ng) = 1.50

=>Speed of light in the glass (v) = Speed of light in vacuum/ Refractive index of glass

= c/ng

=3 × 108/1.50 = 2x 108 ms-1.

Therefore, the speed of light in the glass is 2×108ms-1.

\huge\bold{\red{\boxed{\green{\mathcal{Be \: Brainly }}}}}

Answered by Anonymous
7

Given ,

  • Refractive index of glass  \sf( \mu) = 1.50

  • The speed of light in vacuum = 3 × (10)^8 m/s

As we know that ,

The ratio of speed of light in vacuum to the speed of light in medium is called refractive index of medium

It is denoted by  \mu

 \large \sf \underline{ \fbox{ \mu =  \frac{c}{v} }}

It has no units and dimensions

Thus ,

</p><p>\sf \Rightarrow </p><p></p><p>1.50 =  \frac{3 \times   {(10)}^{8}  }{v}  \\  \\</p><p>\sf \Rightarrow </p><p></p><p> v =  \frac{3 \times  {(10)}^{8} }{1.50}  \\  \\ </p><p>\sf \Rightarrow </p><p></p><p>v = 2 \times  {(10)}^{8}  \:  \: m/s

 \therefore \sf  \underline{The  \: speed  \: of \:  light \:  in  \: glass  \: is \: 2 \times  {(10)}^{8}  \:  \:  m/s}

Similar questions