Math, asked by Anonymous, 9 months ago

lim 1^2+2^2+3^2+.........n^2 /n^3 n€N
n-->infinity


Solve fast....pls

Don't spma.....

I will mark as brainliest....


Anonymous: ...
KJB811217: yes
KJB811217: any doubt
KJB811217: any
umiko28: no
KJB811217: so

Answers

Answered by umiko28
4

Answer:

{\large{\overbrace{\underbrace{\purple{your  \:  \: answer:  \frac{1}{3} }}}}} \\  \\  ♡ dear *----*

Step-by-step explanation:

 \bf\red{ {1}^{2}  +  {2}^{2} +  {3}^{2} + ........ {n}^{2}   }  \\  \\  \bf\red{ \underline{principle  \: of  \: mathematical \:  induction \implies \frac{n(n + 1)(2n + 1)}{6} }}   \\  \\ \bf\ lim \:  \frac{ {1}^{2} +  {2}^{2} +  {3}^{2}  + ............  + {n}^{2}   }{ {n}^{3} }  \:  \:  \:  \:  \: (n \: belongs \: to \: N) \\ n\mapsto \infty  \\  \\  \bf\  \implies \: lim \frac{n(n + 1)(2n + 1)}{6 {n}^{3} } \\  n \mapsto \infty   \\  \\  \bf\  \implies \:  \frac{1}{6}  \: lim( \frac{n + 1}{n} )( \frac{2n + 1}{n} ) \\ n \mapsto \infty  \\  \\  \bf\  \implies \frac{1}{6}  \: lim[(1 +  \frac{1}{n} )(2 +  \frac{1}{n})]  \\ n \mapsto \infty  \\  \\  \bf\  \implies \frac{1}{6} (1 + 0)(2 + 0) \:  \:  \:  \:  \: \:  \:  \:   \bf\underline{ [\therefore \: n \mapsto \infty   \:  \:  \:  \frac{1}{n}  \mapsto0]  }\\  \\ \bf\boxed{  \bigstar \implies \frac{1}{3} \:  \:  \bigstar } \\  \\  \\

\large\boxed{ \fcolorbox{red}{pink}{hope \: it \: help \: you}}

Answered by KJB811217
3

Answer:

Refers to the attachment....

Attachments:
Similar questions