Math, asked by imranseeji90, 6 months ago

lim 1-cos2x÷1-cos4x

Answers

Answered by criskristabel
1

HEY MATE!

HERES YOUR ANSWER..

Attachments:
Answered by pulakmath007
0

SOLUTION

COMPLETE QUESTION

\displaystyle  \sf\lim_{x \to 0} \:  \frac{1 -  \cos 2x}{1 -  \cos 4x}

EVALUATION

Here the given expression is

\displaystyle  \sf\lim_{x \to 0} \:  \frac{1 -  \cos 2x}{1 -  \cos 4x}

We solve it using L'HOSPITAL RULE

\displaystyle  \sf\lim_{x \to 0} \:  \frac{1 -  \cos 2x}{1 -  \cos 4x}  \:  \:  \bigg(  \frac{0}{0} \:  \: form \bigg)

\displaystyle  \sf = \lim_{x \to 0} \:  \frac{ + 2  \sin 2x}{ + 4  \sin 4x} \:  \:  \:  \:  \bigg(  \frac{0}{0} \:  \: form \bigg)

\displaystyle  \sf = \lim_{x \to 0} \:  \frac{ + 4  \cos 2x}{ + 16 \cos 4x}

\displaystyle  \sf =  \frac{ 4 \times 1}{ 16 \times 1}

\displaystyle  \sf =  \frac{ 4 }{ 16}

 \bf =  \dfrac{1}{4}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions