Math, asked by Lsoham, 1 year ago

Lim. 8x³-1 / 16x4-1
x--->1/2

Answers

Answered by MaheswariS
31

Answer:

\bf\lim_{x\to\frac{1}{2}}\;\frac{8x^3-1}{16x^4-1}=\frac{3}{4}

Step-by-step explanation:

Given:

\lim_{x\to\frac{1}{2}}\;\frac{8x^3-1}{16x^4-1}

we factorize both numerator and denominator

=\lim_{x\to\frac{1}{2}}\;\frac{(2x)^3-1^3}{(4x^2)^2-1^2}

Using

\boxed{\bf\;a^3-b^3=(a-b)(a^2+ab+b^2)}

\boxed{\bf\;a^2-b^2=(a-b)(a+b)}

=\lim_{x\to\frac{1}{2}}\;\frac{(2x-1)(4x^2+2x+1)}{(4x^2-1)(4x^2+1)}

=\lim_{x\to\frac{1}{2}}\;\frac{(2x-1)(4x^2+2x+1)}{((2x)^2-1^2)(4x^2+1)}

=\lim_{x\to\frac{1}{2}}\;\frac{(2x-1)(4x^2+2x+1)}{(2x-1)(2x+1)(4x^2+1)}

=\lim_{x\to\frac{1}{2}}\;\frac{4x^2+2x+1}{(2x+1)(4x^2+1)}

=\frac{4(\frac{1}{4})+2(\frac{1}{2})+1}{(2(\frac{1}{2})+1)(4(\frac{1}{4})+1)}

=\frac{1+1+1}{1+1)(1+1)}

=\frac{3}{4}

\implies\boxed{\bf\lim_{x\to\frac{1}{2}}\;\frac{8x^3-1}{16x^4-1}=\frac{3}{4}}

Similar questions