Math, asked by mrlucky1983, 8 days ago

lim tends 0 log(1+ax) - log (1-bx) ÷ x = 8 , Given a - b = 4 .Then a÷b =​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a - b = 4 -  -  - (1)

and

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + ax) - log(1 - bx)}{x}  = 8

can be rewritten as

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + ax)}{x} - \displaystyle\lim_{x \to 0}\rm  \frac{log(1 - bx)}{x}   = 8

can be further rewritten as

\rm :\longmapsto\:a\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + ax)}{ax} + b \displaystyle\lim_{x \to 0}\rm  \frac{log(1 - bx)}{ - bx}   = 8

We know,

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}}

So, using this identity, we get

\rm :\longmapsto\:a + b = 8 -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2a = 12

\rm\implies \:\boxed{\tt{  \:  \: a \:  =  \: 6 \:  \: }}

On Subtracting equation (1) from equation (2), we get

\rm :\longmapsto\:2b = 4

\rm\implies \:\boxed{\tt{  \:  \: b \:  =  \: 2 \:  \: }}

Hence,

\bf\implies \:\dfrac{a}{b}  = \dfrac{6}{2}  = 3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}}

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}}

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}}

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}}

Answered by EmperorSoul
1

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a - b = 4 -  -  - (1)

and

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + ax) - log(1 - bx)}{x}  = 8

can be rewritten as

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + ax)}{x} - \displaystyle\lim_{x \to 0}\rm  \frac{log(1 - bx)}{x}   = 8

can be further rewritten as

\rm :\longmapsto\:a\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + ax)}{ax} + b \displaystyle\lim_{x \to 0}\rm  \frac{log(1 - bx)}{ - bx}   = 8

We know,

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}}

So, using this identity, we get

\rm :\longmapsto\:a + b = 8 -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2a = 12

\rm\implies \:\boxed{\tt{  \:  \: a \:  =  \: 6 \:  \: }}

On Subtracting equation (1) from equation (2), we get

\rm :\longmapsto\:2b = 4

\rm\implies \:\boxed{\tt{  \:  \: b \:  =  \: 2 \:  \: }}

Hence,

\bf\implies \:\dfrac{a}{b}  = \dfrac{6}{2}  = 3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}}

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}}

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}}

 \red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}}

Similar questions