Math, asked by kalzzmuffin, 8 months ago

Lim x→0 (log 1+8x)/x

Answers

Answered by MaheswariS
4

\underline{\textsf{To find:}}

\textsf{Value of}

\mathsf{\displaystyle\lim_{x\to\;0}\;\dfrac{log(1+8x)}{x}}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{\displaystyle\lim_{x\to\;0}\;\dfrac{log(1+8x)}{x}}

\mathsf{when\;applying\;limit,\;we\;get\;\dfrac{0}{0}\;form}

\mathsf{Applying\;L\;Hopital's\;rule}

\mathsf{\displaystyle\lim_{x\to\;0}\;\dfrac{log(1+8x)}{x}=\displaystyle\lim_{x\to\;0}\;\dfrac{\left(\dfrac{1}{1+8x}\right)8}{1}}

\mathsf{=\dfrac{\left(\dfrac{1}{1+8(0)}\right)8}{1}}

\mathsf{=8}

\therefore\boxed{\mathsf{\displaystyle\lim_{x\to\;0}\;\dfrac{log(1+8x)}{x}=8}}

\underline{\textsf{Find more:}}

Lim. 8x³-1 / 16x4-1

x--->1/2

https://brainly.in/question/6423235

Lt x=0 (cos7X-cos9X)/(cosX-cos5X)

https://brainly.in/question/6057974

Limit x tends to 1

[(x-2/x^2-x)-1/x^3-3x^2+2x)]

https://brainly.in/question/5187782

The value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is​

https://brainly.in/question/28582236

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

\displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + 8x)}{x}

FORMULA TO BE IMPLEMENTED

We are aware of the formula on limit that

\displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + x)}{x}  = 1

EVALUATION

Here the given limit

 =  \: \displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + 8x)}{x}

 =  \: \displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + 8x)}{8x}   \: \times 8

 =  \: 8 \times \displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + 8x)}{8x}

Let u = 8x

Then as x → 0 we have u → 0

Then the given limit becomes

  \: \displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + 8x)}{x}

 =  \: 8 \times \displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + 8x)}{8x}

 =  \: 8 \times \displaystyle \lim_{u \to 0} \:   \frac{ \log \: (1 + u)}{u}

  = 8 \times 1 \:  \:  \bigg( \:  \because \: \displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + x)}{x}  = 1 \bigg)

 = 8

FINAL ANSWER

  \boxed{ \:  \:  \displaystyle \lim_{x \to 0} \:   \frac{ \log \: (1 + 8x)}{x}  \:  = \:  8 \:  \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions