Math, asked by rubabsiddiqui78, 5 months ago

lim x=0
 \sqrt{2 - x}  -  \sqrt{2} \div x \\

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

\lim_{x \rarr0} \frac{ \sqrt{2 - x} -  \sqrt{2}  }{x}  \\

 = \lim_{x \rarr0} \frac{( \sqrt{2 - x}  -  \sqrt{2} )( \sqrt{2 - x}  +  \sqrt{2} )}{x( \sqrt{2 - x}  +  \sqrt{2} )}  \\

 = \lim_{x \rarr0} \frac{2 - x - 2}{x( \sqrt{2 - x} +  \sqrt{2})  }  \\

 = \lim_{x \rarr0} \frac{ - x}{x( \sqrt{2 - x} +  \sqrt{2} ) }  \\

 =  \lim_{x \rarr0} \frac{ - 1}{ \sqrt{2 - x} +  \sqrt{2}  }  \\

 =  \frac{ - 1}{2 \sqrt{2} }

Similar questions