Math, asked by Anonymous, 11 months ago

Lim {(x+1)^5-1}/x
X➡0


shreeyas: hi
Anonymous: hlo
shreeyas: what
shreeyas: are
shreeyas: u do
shreeyas: ing
umiko28: ...
shreeyas: what's meaning?
shreeyas: say

Answers

Answered by umiko28
18

Answer:

{\large{\overbrace{\underbrace{\purple{your  \: answer:5 }}}}} \\  \\  ♡ dear *----*

Step-by-step explanation:

 \bf\ lim \frac{ ({x + 1)}^{5} }{x}  \\ x \mapsto0 \\  \\   \bf\ let \\  \bf\underline{\: x + 1 = y}  \\  \\  \bf\red{so \: x \mapsto0} \\ \bf\pink{ y\mapsto1} \\  \\ \bf\ \implies \: lim \:   \:  \: \frac{ {y}^{5}  - 1}{y - 1}     \\  \: \: \:   \:  \:  \:  \: \bf\ \: y \mapsto1 \\  \\ \: we \: know  \: that\\  \bf\red{lim \frac{ {x}^{n}  -  {a}^{n} }{x - a}  =  {na}^{n - 1}} \\  \bf\ x \mapsto \: a  \\  \\ \bf\ \implies \: lim \frac{ {y}^{5}  -  {1}^{5} }{y - 1}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf\ \: x \mapsto 1 \\  \\\bf\ \implies5 \times   {1}^{5 - 1} \\  \\\bf\ \implies5 \times  {1}^{4}   \\  \\  \bf\boxed{ \implies5 \times 1 =5 } \\  \\ \large\boxed{ \fcolorbox{red}{pink}{hope \: it \: help \: you}}

Answered by anshi60
16

Solution :-

 \lim _{x\to\:0} \frac{( {x + 1})^{5} - 1 }{x}  \\  \\  putting \: x = 0 \\  \\  = \:  \frac{( {0 + 1})^{5} - 1 }{0}  \\  \\    = \frac{ {1}^{5} - 1 }{0}  \\  \\    = \frac{1 - 1}{0}  \\  \\ =  \frac{0}{0}  \\  \\ Since ,\: it \: is \: in \: the \: form \: of \:  \frac{0}{0}

Formula Used :-

\lim _{x\to\:a} \frac{ {x}^{n}  -  {a}^{n} }{x - a}  = n {a}^{n - 1}  \\  \\

So,

 \lim _{x\to\:0} \frac{( {x + 5})^{5}  - 1}{ x}  \\  \\  \: let \: y = x + 1 \\ x = y - 1 \\  \\ here \: x \rightarrow  0 \\  then \: y \rightarrow0 + 1 \\  y \rightarrow1 \\  \\ Therefore, \: \\  \lim _{x\to\:0} \frac{( {x + 1})^{5}  - 1}{x}  =  \lim _{y\to\:1}  \frac{ {y}^{5}  - 1}{y - 1}  \\  \\  =  \lim _{y\to\:1} \frac{ {y}^{5}  -  {1}^{5} }{y - 1}  \\  \\  =  5 \times  {1}^{5 - 1}  \\  \\  = 5 \times  {1}^{4}  \\  \\  = 5 \\  \\ {\purple{\boxed{\large{\bold{\lim_{x\to\:0} \frac{ ({x + 1})^{5}  - 1}{x} = 5  }}}}}

Similar questions