Math, asked by ritika6222, 1 year ago

lim(x→π/2)([1 - tan(x/2)][1 - sinx])/([1 + tan(x/2)][π - 2x]^3 is

Answers

Answered by pinquancaro
40

Consider the given expression,

 limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\tan \frac{x}{2})(1-\sin x)}{(1+\tan\frac{x}{2})(\Pi-2x^{3})}

Expressing tan in the form of sin and cos, we get

 =limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})(1-\sin x)}{(\cos \frac{x}{2}+\sin \frac{x}{2})(\Pi-2x^{3})}

Multiplying and dividing by  (\cos \frac{x}{2}-\sin \frac{x}{2}) , we get

=  limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})(\cos \frac{x}{2}-\sin \frac{x}{2})(1-\sin x)}{(\cos \frac{x}{2}+\sin \frac{x}{2})(\cos \frac{x}{2}-\sin \frac{x}{2})(\Pi-2x^{3})}  

=  limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})^{2}(1-\sin x)}{(\cos^{2} \frac{x}{2}-\sin^{2} \frac{x}{2})(\Pi-2x^{3})}

=  limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos^{2} \frac{x}{2}+\sin^{2} \frac{x}{2}-2\sin\frac{x}{2}\cos \frac{x}{2})(1-\sin x)}{(\cos x)(\Pi-2x^{3})}

= limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\sin x)(1-\sin x)}{(\cos x)(\Pi-2x^{3})}

=  limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\sin x)^{2}}{(\cos x)(\Pi-2x^{3})}

Let  \Pi-2x = t

When x tends to  \frac{\Pi}{2} , t tends to 0.

Also x =   \frac{\Pi }{2}-\frac{t}{2}

 =limit_{t\rightarrow 0}\frac{(1-\sin (\frac{\Pi }{2}-\frac{t}{2}))^{2}}{(\cos (\frac{\Pi }{2}-\frac{t}{2}))(\Pi-2(\frac{\Pi }{2}-\frac{t}{2})^{3})}

=  limit_{t\rightarrow 0}\frac{(1-\cos \frac{t}{2})^{2}}{(\sin \frac{t}{2})({t}^{3})}

=  limit_{t\rightarrow 0}\frac{(2\sin^{2}\frac{t}{4})^{2}}{(2\sin \frac{t}{4}\cos\frac{t}{4})({t}^{3})}

=  limit_{t\rightarrow 0}\frac{(2\sin^{3}\frac{t}{4})}{(\cos\frac{t}{4})({t}^{3})}

 =limit_{t\rightarrow 0}\frac{(2\sin^{3}\frac{t}{4})}{t^{3}}

=  2 \times \frac{1}{64}

=  \frac{1}{32}

So, the final answer is  \frac{1}{32} .

Answered by vidhirastogi01
4

Answer:

Step-by-step explanation:

limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\tan \frac{x}{2})(1-\sin x)}{(1+\tan\frac{x}{2})(\Pi-2x^{3})}  

Expressing tan in the form of sin and cos, we get

=limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})(1-\sin x)}{(\cos \frac{x}{2}+\sin \frac{x}{2})(\Pi-2x^{3})}

Multiplying and dividing by  (\cos \frac{x}{2}-\sin \frac{x}{2}) , we get

=  limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})(\cos \frac{x}{2}-\sin \frac{x}{2})(1-\sin x)}{(\cos \frac{x}{2}+\sin \frac{x}{2})(\cos \frac{x}{2}-\sin \frac{x}{2})(\Pi-2x^{3})}  

=  limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})^{2}(1-\sin x)}{(\cos^{2} \frac{x}{2}-\sin^{2} \frac{x}{2})(\Pi-2x^{3})}  

=  limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos^{2} \frac{x}{2}+\sin^{2} \frac{x}{2}-2\sin\frac{x}{2}\cos \frac{x}{2})(1-\sin x)}{(\cos x)(\Pi-2x^{3})}  

= limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\sin x)(1-\sin x)}{(\cos x)(\Pi-2x^{3})}  

=  limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\sin x)^{2}}{(\cos x)(\Pi-2x^{3})}  

Let  \Pi-2x = t  

When x tends to  \frac{\Pi}{2}  , t tends to 0.

Also x =   \frac{\Pi }{2}-\frac{t}{2}  

=limit_{t\rightarrow 0}\frac{(1-\sin (\frac{\Pi }{2}-\frac{t}{2}))^{2}}{(\cos (\frac{\Pi }{2}-\frac{t}{2}))(\Pi-2(\frac{\Pi }{2}-\frac{t}{2})^{3})}  

=  limit_{t\rightarrow 0}\frac{(1-\cos \frac{t}{2})^{2}}{(\sin \frac{t}{2})({t}^{3})}  

=  limit_{t\rightarrow 0}\frac{(2\sin^{2}\frac{t}{4})^{2}}{(2\sin \frac{t}{4}\cos\frac{t}{4})({t}^{3})}  

=  limit_{t\rightarrow 0}\frac{(2\sin^{3}\frac{t}{4})}{(\cos\frac{t}{4})({t}^{3})}  

=limit_{t\rightarrow 0}\frac{(2\sin^{3}\frac{t}{4})}{t^{3}}  

=  2 \times \frac{1}{64}  

=  \frac{1}{32}  

Similar questions