lim(x→π/2)([1 - tan(x/2)][1 - sinx])/([1 + tan(x/2)][π - 2x]^3 is
Answers
Consider the given expression,
Expressing tan in the form of sin and cos, we get
Multiplying and dividing by , we get
=
=
=
=
=
Let
When x tends to , t tends to 0.
Also x =
=
=
=
=
=
So, the final answer is .
Answer:
Step-by-step explanation:
limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\tan \frac{x}{2})(1-\sin x)}{(1+\tan\frac{x}{2})(\Pi-2x^{3})}
Expressing tan in the form of sin and cos, we get
=limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})(1-\sin x)}{(\cos \frac{x}{2}+\sin \frac{x}{2})(\Pi-2x^{3})}
Multiplying and dividing by (\cos \frac{x}{2}-\sin \frac{x}{2}) , we get
= limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})(\cos \frac{x}{2}-\sin \frac{x}{2})(1-\sin x)}{(\cos \frac{x}{2}+\sin \frac{x}{2})(\cos \frac{x}{2}-\sin \frac{x}{2})(\Pi-2x^{3})}
= limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos \frac{x}{2}-\sin \frac{x}{2})^{2}(1-\sin x)}{(\cos^{2} \frac{x}{2}-\sin^{2} \frac{x}{2})(\Pi-2x^{3})}
= limit_{x\rightarrow \frac{\Pi }{2}}\frac{(\cos^{2} \frac{x}{2}+\sin^{2} \frac{x}{2}-2\sin\frac{x}{2}\cos \frac{x}{2})(1-\sin x)}{(\cos x)(\Pi-2x^{3})}
= limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\sin x)(1-\sin x)}{(\cos x)(\Pi-2x^{3})}
= limit_{x\rightarrow \frac{\Pi }{2}}\frac{(1-\sin x)^{2}}{(\cos x)(\Pi-2x^{3})}
Let \Pi-2x = t
When x tends to \frac{\Pi}{2} , t tends to 0.
Also x = \frac{\Pi }{2}-\frac{t}{2}
=limit_{t\rightarrow 0}\frac{(1-\sin (\frac{\Pi }{2}-\frac{t}{2}))^{2}}{(\cos (\frac{\Pi }{2}-\frac{t}{2}))(\Pi-2(\frac{\Pi }{2}-\frac{t}{2})^{3})}
= limit_{t\rightarrow 0}\frac{(1-\cos \frac{t}{2})^{2}}{(\sin \frac{t}{2})({t}^{3})}
= limit_{t\rightarrow 0}\frac{(2\sin^{2}\frac{t}{4})^{2}}{(2\sin \frac{t}{4}\cos\frac{t}{4})({t}^{3})}
= limit_{t\rightarrow 0}\frac{(2\sin^{3}\frac{t}{4})}{(\cos\frac{t}{4})({t}^{3})}
=limit_{t\rightarrow 0}\frac{(2\sin^{3}\frac{t}{4})}{t^{3}}
= 2 \times \frac{1}{64}
= \frac{1}{32}