Math, asked by akash576389, 4 months ago

lim x^2- square root x by
x->1 square rootx - 1

Attachments:

Answers

Answered by Anonymous
153

Question:-

\displaystyle\lim\limits_{x \to 1} \sf \dfrac{x^2-\sqrt{x}}{\sqrt{x}-1}

answer:-

\displaystyle\lim\limits_{x \to 1} \sf \dfrac{x^2-\sqrt{x}}{\sqrt{x}-1}

\rm

 = \displaystyle\lim\limits_{x \to 1} \sf \dfrac{(x^2-\sqrt{x})(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}

\rm

 = \displaystyle\lim\limits_{x \to 1} \sf \sqrt{x} + x + x^{3/2}

\rm

\sf = \sqrt{1} + 1 + 1^{3/2}

\rm

\sf = 1 + 1 + 1 = 3

\rm

Additional Information:-

➳ some important limits

\boxed{\begin{minipage}{4.5cm}\displaystyle\circ\sf\:\lim\limits_{x \to 0} \sin x = 0 \\\\ \circ\sf\:\lim\limits_{x \to 0} \cos x = 1 \\\\ \circ\sf\:\lim\limits_{x \to 0} \dfrac{\sin x}{x} = 1 \\\\ \circ\sf\:\lim\limits_{x \to 0} \dfrac{\tan x}{x} = 1 \\\\ \circ\sf\:\lim\limits_{x \to 0} \dfrac{\log(1+x)}{x} = 1 \\\\ \circ\sf\;\lim\limits_{x \to 1} e^{x} = 1 \end{minipage}}

Note: if you're unable to see the important limits, see answer from https://brainly.in/

see answer at : https://brainly.in/question/31833934


Weeeeeeex: always welcome ( ╹▽╹ )
Anonymous: :)
Anonymous: thank you so much for giving your valuable thanks
Anonymous: :) Always welcome !!♡
Anonymous: hmm..... thank you ☺️♥️♥️
Anonymous: I don't want thanks
Anonymous: pls don't give now....... thank you so much ♥️☺️
Anonymous: oky oky :)♡
Anonymous: hmm.....btw thanks ♥️♥️
Anonymous: wello ♥
Similar questions