Math, asked by jaimin1317, 2 months ago

lim x=2 (x^2-7x+10)/(x-2)​

Answers

Answered by StormEyes
3

Solution!!

\sf \to \displaystyle \lim_{x\to 2} \left(\dfrac{x^{2}-7x+10}{x-2}\right)

Let's evaluate using transformations.

Evaluate the limits of numerator and denominator separately.

\sf \to \displaystyle \lim_{x\to 2} (x^{2}-7x+10)

\sf \to \displaystyle \lim_{x\to 2} (x-2)

Evaluate the limit.

\sf \to (2^{2}-7(2)+10)

\sf \to (2-2)

 \\

\sf \to (4 - 14 + 10)

\sf \to (0)

 \\

\sf \to (0)

\sf \to (0)

Since, the expression 0/0 is an indeterminate form, try transforming the expression.

\sf \to \displaystyle \lim_{x\to 2} \left(\dfrac{x^{2}-7x+10}{x-2}\right)

Write -7x as a difference.

\sf \to \displaystyle \lim_{x\to 2} \left(\dfrac{x^{2}-2x-5x+10}{x-2}\right)

Factor out x from the expression.

\sf \to \displaystyle \lim_{x\to 2} \left(\dfrac{x(x-2)-5x+10}{x-2}\right)

Factor out -5 from the expression.

\sf \to \displaystyle \lim_{x\to 2} \left(\dfrac{x(x-2)-5(x-2)}{x-2}\right)

Factor out (x - 2) from the expression.

\sf \to \displaystyle \lim_{x\to 2} \left(\dfrac{(x-2)(x-5)}{x-2}\right)

Reduce the fraction with (x - 2).

\sf \to \displaystyle \lim_{x\to 2} (x-5)

Evaluate the limit.

\sf \to 2-5

\boxed{\sf \to -3}

Similar questions